Wujun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3917139/publications.pdf

Version: 2024-02-01

279487 288905 1,668 44 23 40 h-index citations g-index papers 45 45 45 2430 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Dualâ€contrast microâ€CT enables cartilage lesion detection and tissue condition evaluation ex vivo. Equine Veterinary Journal, 2023, 55, 315-324.	0.9	5
2	Experimental Evaluation of Radiation Response and Thermal Properties of NPs-Loaded Tissues-Mimicking Phantoms. Nanomaterials, 2022, 12, 945.	1.9	9
3	Recent Developments in Porous Silicon Nanovectors with Various Imaging Modalities in the Framework of Theranostics. ChemMedChem, 2022, 17, .	1.6	2
4	Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33555-33566.	4.0	32
5	Inorganic Nanomaterials for Photothermalâ€Based Cancer Theranostics. Advanced Therapeutics, 2021, 4, 2000207.	1.6	11
6	Comparison between Fluorescence Imaging and Elemental Analysis to Determine Biodistribution of Inorganic Nanoparticles with Strong Light Absorption. ACS Applied Materials & Samp; Interfaces, 2021, 13, 40392-40400.	4.0	5
7	Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nature Communications, 2021, 12, 5726.	5.8	126
8	Triple Contrast CT Method Enables Simultaneous Evaluation of Articular Cartilage Composition and Segmentation. Annals of Biomedical Engineering, 2020, 48, 556-567.	1.3	10
9	Black Mesoporous Silicon as a Contrast Agent for LED-Based 3D Photoacoustic Tomography. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5456-5461.	4.0	11
10	Tailored Synthesis of PEGylated Bismuth Nanoparticles for X-ray Computed Tomography and Photothermal Therapy: One-Pot, Targeted Pyrolysis, and Self-Promotion. ACS Applied Materials & Interfaces, 2020, 12, 47233-47244.	4.0	7
11	Thermal dose as a universal tool to evaluate nanoparticle-induced photothermal therapy. International Journal of Pharmaceutics, 2020, 587, 119657.	2.6	11
12	Cascading use of barley husk ash to produce silicon for composite anodes of Li-ion batteries. Materials Chemistry and Physics, 2020, 245, 122736.	2.0	14
13	Mechanical penetration of β-lactam–resistant Gram-negative bacteria by programmable nanowires. Science Advances, 2020, 6, .	4.7	23
14	Cavitation Induced by Janus-Like Mesoporous Silicon Nanoparticles Enhances Ultrasound Hyperthermia. Frontiers in Chemistry, 2019, 7, 393.	1.8	17
15	Site-Specific 111In-Radiolabeling of Dual-PEGylated Porous Silicon Nanoparticles and Their In Vivo Evaluation in Murine 4T1 Breast Cancer Model. Pharmaceutics, 2019, 11, 686.	2.0	14
16	Designed inorganic porous nanovector with controlled release and MRI features for safe administration of doxorubicin. International Journal of Pharmaceutics, 2019, 554, 327-336.	2.6	12
17	Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles. Journal of Materials Chemistry B, 2018, 6, 3632-3649.	2.9	30
18	Mesoporous systems for poorly soluble drugs – recent trends. International Journal of Pharmaceutics, 2018, 536, 178-186.	2.6	51

#	Article	IF	Citations
19	Scalable Synthesis of Biodegradable Black Mesoporous Silicon Nanoparticles for Highly Efficient Photothermal Therapy. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23529-23538.	4.0	35
20	Dual Contrast CT Method Enables Diagnostics of Cartilage Injuries and Degeneration Using a Single CT Image. Annals of Biomedical Engineering, 2017, 45, 2857-2866.	1.3	22
21	Nano Air Seeds Trapped in Mesoporous Janus Nanoparticles Facilitate Cavitation and Enhance Ultrasound Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 35234-35243.	4.0	27
22	Chlorin e6 Functionalized Theranostic Multistage Nanovectors Transported by Stem Cells for Effective Photodynamic Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23441-23449.	4.0	51
23	Temperature responsive porous silicon nanoparticles for cancer therapy – spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. Journal of Controlled Release, 2016, 241, 220-228.	4.8	58
24	Cytotoxicity assessment of porous silicon microparticles for ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 100, 1-8.	2.0	37
25	Systematic inÂvitro and inÂvivo study on porous silicon to improve the oral bioavailability of celecoxib. Biomaterials, 2015, 52, 44-55.	5.7	38
26	Smart Porous Silicon Nanoparticles with Polymeric Coatings for Sequential Combination Therapy. Molecular Pharmaceutics, 2015, 12, 4038-4047.	2.3	63
27	Porous Silicon in Drug Delivery Applications. Springer Series in Materials Science, 2015, , 163-185.	0.4	0
28	Improved stability and biocompatibility of nanostructured silicon drug carrier for intravenous administration. Acta Biomaterialia, 2015, 13, 207-215.	4.1	60
29	A Nanostopper Approach To Selectively Engineer the Surfaces of Mesoporous Silicon. Chemistry of Materials, 2014, 26, 6734-6742.	3.2	28
30	Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery. Microporous and Mesoporous Materials, 2014, 195, 2-8.	2.2	15
31	Porous Silicon–Cell Penetrating Peptide Hybrid Nanocarrier for Intracellular Delivery of Oligonucleotides. Molecular Pharmaceutics, 2014, 11, 382-390.	2.3	28
32	Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity. International Journal of Pharmaceutics, 2013, 454, 67-73.	2.6	30
33	Mesoporous systems for poorly soluble drugs. International Journal of Pharmaceutics, 2013, 453, 181-197.	2.6	196
34	Amine Surface Modifications and Fluorescent Labeling of Thermally Stabilized Mesoporous Silicon Nanoparticles. Journal of Physical Chemistry C, 2012, 116, 22307-22314.	1.5	41
35	Surface Chemistry, Reactivity, and Pore Structure of Porous Silicon Oxidized by Various Methods. Langmuir, 2012, 28, 10573-10583.	1.6	82
36	Intactness and spatial proximity of acid–base groups in bifunctional SBA-15 as revealed by solid-state NMR. Chemical Physics Letters, 2010, 491, 72-74.	1.2	5

#	ARTICLE	IF	CITATION
37	A Novel Phase Transformation Phenomenon in Mesostructured Aluminophosphate. Journal of Physical Chemistry C, 2010, 114, 7076-7084.	1.5	9
38	Alumina nanofibers grafted with functional groups: A new design in efficient sorbents for removal of toxic contaminants from water. Water Research, 2010, 44, 741-750.	5.3	84
39	pH-Controlled drug release from mesoporous silica tablets coated with hydroxypropyl methylcellulose phthalate. Materials Research Bulletin, 2009, 44, 606-612.	2.7	74
40	Controllable release of ibuprofen from size-adjustable and surface hydrophobic mesoporous silica spheres. Powder Technology, 2009, 191, 13-20.	2.1	100
41	Controlled drug release from bifunctionalized mesoporous silica. Journal of Solid State Chemistry, 2008, 181, 2837-2844.	1.4	46
42	Amino Acid Adsorption on Mesoporous Materials:  Influence of Types of Amino Acids, Modification of Mesoporous Materials, and Solution Conditions. Journal of Physical Chemistry B, 2008, 112, 2261-2267.	1.2	122
43	Tuning pore size and hydrophobicity of macroporous hybrid silica films with high optical transmittance by a non-template route. Journal of Materials Chemistry, 2008, 18, 5557.	6.7	22
44	Ibuprofen delivery systems based on monodispersed spherical MCM-41 materials. Studies in Surface Science and Catalysis, 2007, , 861-865.	1.5	5