
Shigeo Murata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3917078/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The effect of nutrient deprivation on proteasome activity in 4-week-old mice and 24-week-old mice. Journal of Nutritional Biochemistry, 2022, , 108993.	1.9	0
2	Controlled Tetradeuteration of Straightâ€Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid. Angewandte Chemie - International Edition, 2022, 61, .	7.2	6
3	The Molecular Mechanisms Governing the Assembly of the Immuno- and Thymoproteasomes in the Presence of Constitutive Proteasomes. Cells, 2022, 11, 1580.	1.8	4
4	Titelbild: Controlled Tetradeuteration of Straightâ€Chain Fatty Acids: Synthesis, Application, and Insight into the Metabolism of Oxidized Linoleic Acid (Angew. Chem. 25/2022). Angewandte Chemie, 2022, 134, .	1.6	0
5	The ubiquitination-deubiquitination cycle on the ribosomal protein eS7A is crucial for efficient translation. IScience, 2021, 24, 102145.	1.9	16
6	Gluing Proteins for Targeted Degradation. Cancer Cell, 2021, 39, 19-21.	7.7	3
7	Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency. Nature Communications, 2021, 12, 6819.	5.8	20
8	Enhanced O-GlcNAcylation Mediates Cytoprotection under Proteasome Impairment by Promoting Proteasome Turnover in Cancer Cells. IScience, 2020, 23, 101299.	1.9	4
9	Cu(<scp>i</scp>)/sucrose-catalyzed hydroxylation of arenes in water: the dual role of sucrose. Organic and Biomolecular Chemistry, 2020, 18, 7827-7831.	1.5	3
10	NRF3-POMP-20S Proteasome Assembly Axis Promotes Cancer Development via Ubiquitin-Independent Proteolysis of p53 and Retinoblastoma Protein. Molecular and Cellular Biology, 2020, 40, .	1.1	33
11	ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. International Journal of Molecular Sciences, 2020, 21, 3683.	1.8	29
12	Stress- and ubiquitylation-dependent phase separation of the proteasome. Nature, 2020, 578, 296-300.	13.7	204
13	Fluctuations of Spleen Cytokine and Blood Lactate, Importance of Cellular Immunity in Host Defense Against Blood Stage Malaria Plasmodium yoelii. Frontiers in Immunology, 2019, 10, 2207.	2.2	6
14	Defective induction of the proteasome associated with Tâ€cell receptor signaling underlies Tâ€cell senescence. Genes To Cells, 2019, 24, 801-813.	0.5	18
15	Copper-catalyzed arene amination in pure aqueous ammonia. Organic and Biomolecular Chemistry, 2019, 17, 1791-1795.	1.5	11
16	FAM48A mediates compensatory autophagy induced by proteasome impairment. Genes To Cells, 2019, 24, 559-568.	0.5	1
17	Dynamic Regulation of Proteasome Expression. Frontiers in Molecular Biosciences, 2019, 6, 30.	1.6	41
18	A Simple and Easy Method of Monitoring Doxorubicin Release from a Liposomal Drug Formulation in the Serum Using Fluorescence Spectroscopy. Chemical and Pharmaceutical Bulletin, 2019, 67, 367-371.	0.6	5

#	Article	IF	CITATIONS
19	In-depth Analysis of the Lid Subunits Assembly Mechanism in Mammals. Biomolecules, 2019, 9, 213.	1.8	10
20	Trans-omics Impact of Thymoproteasome in Cortical Thymic Epithelial Cells. Cell Reports, 2019, 29, 2901-2916.e6.	2.9	27
21	PSMB11 Orchestrates the Development of CD4 and CD8 Thymocytes via Regulation of Gene Expression in Cortical Thymic Epithelial Cells. Journal of Immunology, 2019, 202, 966-978.	0.4	26
22	<i>Shigella</i> effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cellular Microbiology, 2019, 21, e12974.	1.1	12
23	Restricted Expression of the Thymoproteasome Is Required for Thymic Selection and Peripheral Homeostasis of CD8+ T Cells. Cell Reports, 2019, 26, 639-651.e2.	2.9	21
24	Thymoproteasome and peptidic self. Immunogenetics, 2019, 71, 217-221.	1.2	12
25	Specific Modification of Aged Proteasomes Revealed by Tag-Exchangeable Knock-In Mice. Molecular and Cellular Biology, 2019, 39, .	1.1	19
26	Nuclear export of ubiquitinated proteins via the UBIN-POST system. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4199-E4208.	3.3	29
27	Stability and drug release studies of an antimycotic nanomedicine using HPLC, dynamic light scattering and atomic force microscopy. Journal of Pharmaceutical and Biomedical Analysis, 2018, 148, 149-155.	1.4	13
28	Ubiquitin-Binding Protein CG5445 Suppresses Aggregation and Cytotoxicity of Amyotrophic Lateral Sclerosis-Linked TDP-43 in <i>Drosophila</i> . Molecular and Cellular Biology, 2018, 38, .	1.1	8
29	Transcriptional regulation of the 26S proteasome by Nrf1. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 325-336.	1.6	30
30	The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nature Immunology, 2018, 19, 923-931.	7.0	233
31	PAC1â€₽AC2 proteasome assembly chaperone retains the core α4–α7 assembly intermediates in the cytoplasm. Genes To Cells, 2018, 23, 839-848.	0.5	28
32	Enrichment of liposomal nanomedicines using monolithic solid phase extraction discs following preactivation with bivalent metal ion solutions. Journal of Chromatography A, 2018, 1564, 224-227.	1.8	1
33	Foxn1-β5t transcriptional axis controls CD8+ T-cell production in the thymus. Nature Communications, 2017, 8, 14419.	5.8	41
34	Human thymoproteasome variations influence CD8 T cell selection. Science Immunology, 2017, 2, .	5.6	16
35	Structure of the Rpn13-Rpn2 complex provides insights for Rpn13 and Uch37 as anticancer targets. Nature Communications, 2017, 8, 15540.	5.8	67
36	Endosomal phosphatidylserine is critical for the YAP signalling pathway in proliferating cells. Nature Communications, 2017, 8, 1246.	5.8	36

#	Article	IF	CITATIONS
37	Early and consistent overexpression of ADRM1 in ovarian high-grade serous carcinoma. Journal of Ovarian Research, 2017, 10, 53.	1.3	14
38	A human PSMB11 variant affects thymoproteasome processing and CD8+ T cell production. JCI Insight, 2017, 2, .	2.3	6
39	The aspartyl protease DDI2 activates Nrf1 to compensate for proteasome dysfunction. ELife, 2016, 5, .	2.8	137
40	Specialized proteasome subunits have an essential role in the thymic selection of CD8+ T cells. Nature Immunology, 2016, 17, 938-945.	7.0	46
41	Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion. Molecular and Cellular Biology, 2016, 36, 347-362.	1.1	6
42	The thymic cortical epithelium determines the <scp>TCR</scp> repertoire of <scp>IL</scp> â€17â€producing γÎ⊤ cells. EMBO Reports, 2015, 16, 638-653.	2.0	45
43	Sirt1-deficiency causes defective protein quality control. Scientific Reports, 2015, 5, 12613.	1.6	26
44	Redundant Roles of Rpn10 and Rpn13 in Recognition of Ubiquitinated Proteins and Cellular Homeostasis. PLoS Genetics, 2015, 11, e1005401.	1.5	65
45	BAALC potentiates oncogenic ERK pathway through interactions with MEKK1 and KLF4. Leukemia, 2015, 29, 2248-2256.	3.3	30
46	N-Terminal α7 Deletion of the Proteasome 20S Core Particle Substitutes for Yeast PI31 Function. Molecular and Cellular Biology, 2015, 35, 141-152.	1.1	13
47	Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*. Journal of Biological Chemistry, 2015, 290, 15337-15349.	1.6	18
48	Thymoproteasomes produce unique peptide motifs for positive selection of CD8+ T cells. Nature Communications, 2015, 6, 7484.	5.8	73
49	Identification of minimum Rpn4â€responsive elements in genes related to proteasome functions. FEBS Letters, 2015, 589, 933-940.	1.3	44
50	TCR affinity for thymoproteasome-dependent positively selecting peptides conditions antigen responsiveness in CD8+ T cells. Nature Immunology, 2015, 16, 1069-1076.	7.0	57
51	Assembly Mechanisms of Specialized Core Particles of the Proteasome. Biomolecules, 2014, 4, 662-677.	1.8	18
52	Quantitative live-cell imaging reveals spatio-temporal dynamics and cytoplasmic assembly of the 26S proteasome. Nature Communications, 2014, 5, 3396.	5.8	111
53	Characterization of the Testis-specific Proteasome Subunit α4s in Mammals. Journal of Biological Chemistry, 2014, 289, 12365-12374.	1.6	48
54	The mechanism for molecular assembly of the proteasome. Advances in Biological Regulation, 2014, 54, 51-58.	1.4	33

#	Article	IF	CITATIONS
55	Pba3–Pba4 heterodimer acts as a molecular matchmaker in proteasome α-ring formation. Biochemical and Biophysical Research Communications, 2014, 450, 1110-1114.	1.0	25
56	Involvement of Bag6 and the TRC pathway in proteasome assembly. Nature Communications, 2013, 4, 2234.	5.8	30
57	The Ubiquitin-Proteasome System in the Maternal-to-Zygotic Transition. Journal of Mammalian Ova Research, 2013, 30, 79-85.	0.1	1
58	Proteasome Dysfunction Mediates Obesity-Induced Endoplasmic Reticulum Stress and Insulin Resistance in the Liver. Diabetes, 2013, 62, 811-824.	0.3	105
59	Mouse zygote-specific proteasome assembly chaperone important for maternal-to-zygotic transition. Biology Open, 2013, 2, 170-182.	0.6	27
60	Aire-expressing thymic medullary epithelial cells originate from β5t-expressing progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9885-9890.	3.3	135
61	Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins. Cardiovascular Research, 2013, 100, 520-528.	1.8	22
62	Defective immune responses in mice lacking LUBAC-mediated linear ubiquitination in B cells. EMBO Journal, 2013, 32, 2463-2476.	3.5	109
63	Keratin 8 Is Required for the Maintenance of Architectural Structure in Thymus Epithelium. PLoS ONE, 2013, 8, e75101.	1.1	18
64	Thymic nurse cells provide microenvironment for secondary T cell receptor α rearrangement in cortical thymocytes. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20572-20577.	3.3	72
65	Antiangiogenic Tumor Therapy by DNA Vaccine Inducing Aquaporin-1–Specific CTL Based on Ubiquitin–Proteasome System in Mice. Journal of Immunology, 2012, 189, 1618-1626.	0.4	15
66	Decreased Proteasomal Activity Causes Age-Related Phenotypes and Promotes the Development of Metabolic Abnormalities. American Journal of Pathology, 2012, 180, 963-972.	1.9	158
67	β5t-containing thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Current Opinion in Immunology, 2012, 24, 92-98.	2.4	49
68	Using siRNA Techniques to Dissect Proteasome Assembly Pathways in Mammalian Cells. Methods in Molecular Biology, 2012, 832, 433-442.	0.4	4
69	A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. Journal of Clinical Investigation, 2011, 121, 4150-4160.	3.9	258
70	Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death and Differentiation, 2011, 18, 1326-1336.	5.0	38
71	Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit β5t. European Journal of Immunology, 2011, 41, 1278-1287.	1.6	73
72	Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14914-14919.	3.3	288

#	Article	IF	CITATIONS
73	Activity-Based Profiling Reveals Reactivity of the Murine Thymoproteasome-Specific Subunit β5t. Chemistry and Biology, 2010, 17, 795-801.	6.2	72
74	Thymoproteasome Shapes Immunocompetent Repertoire of CD8+ T Cells. Immunity, 2010, 32, 29-40.	6.6	172
75	CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO Journal, 2010, 29, 2501-2514.	3.5	44
76	PAC1 Gene Knockout Reveals an Essential Role of Chaperone-Mediated 20S Proteasome Biogenesis and Latent 20S Proteasomes in Cellular Homeostasis. Molecular and Cellular Biology, 2010, 30, 3864-3874.	1.1	37
77	Genetic immunization based on the ubiquitin-fusion degradation pathway against Trypanosoma cruzi. Biochemical and Biophysical Research Communications, 2010, 392, 277-282.	1.0	12
78	Role of thymic cortex-specific self-peptides in positive selection of T cells. Seminars in Immunology, 2010, 22, 287-293.	2.7	48
79	Genetic Evidence Linking Age-Dependent Attenuation of the 26S Proteasome with the Aging Process. Molecular and Cellular Biology, 2009, 29, 1095-1106.	1.1	233
80	17-DMAG ameliorates polyglutamine-mediated motor neuron degeneration through well-preserved proteasome function in an SBMA model mouse. Human Molecular Genetics, 2009, 18, 898-910.	1.4	109
81	Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to <i>Toxoplasma gondii</i> infection. European Journal of Immunology, 2009, 39, 3385-3394.	1.6	38
82	Involvement of linear polyubiquitylation of NEMO in NF- \hat{I}^{0} B activation. Nature Cell Biology, 2009, 11, 123-132.	4.6	870
83	Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology, 2009, 10, 104-115.	16.1	461
84	Critical role for the immunoproteasome subunit LMP7 in the resistance of mice to Toxoplasma gondii infection. European Journal of Immunology, 2009, , .	1.6	1
85	An Inhibitor of a Deubiquitinating Enzyme Regulates Ubiquitin Homeostasis. Cell, 2009, 137, 549-559.	13.5	79
86	Assembly Pathway of the Mammalian Proteasome Base Subcomplex Is Mediated by Multiple Specific Chaperones. Cell, 2009, 137, 914-925.	13.5	182
87	Crystal structure of the de-ubiquitinating enzyme UCH37 (human UCH-L5) catalytic domain. Biochemical and Biophysical Research Communications, 2009, 390, 855-860.	1.0	40
88	The 20S Proteasome as an Assembly Platform for the 19S Regulatory Complex. Journal of Molecular Biology, 2009, 394, 320-328.	2.0	50
89	Exclusive expression of proteasome subunit \hat{l}^2 5t in the human thymic cortex. Blood, 2009, 113, 5186-5191.	0.6	63
90	Thymoproteasome: probable role in generating positively selecting peptides. Current Opinion in Immunology, 2008, 20, 192-196.	2.4	105

6

#	Article	IF	CITATIONS
91	Critical contribution of immunoproteasomes in the induction of protective immunity against Trypanosoma cruzi in mice vaccinated with a plasmid encoding a CTL epitope fused to green fluorescence protein. Microbes and Infection, 2008, 10, 241-250.	1.0	19
92	Dissecting \hat{I}^2 -ring assembly pathway of the mammalian 20S proteasome. EMBO Journal, 2008, 27, 2204-2213.	3.5	134
93	Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nature Structural and Molecular Biology, 2008, 15, 228-236.	3.6	101
94	Modest cortex and promiscuous medulla for thymic repertoire formation. Trends in Immunology, 2008, 29, 251-255.	2.9	30
95	Chapter 3 Thymic Microenvironments for T-Cell Repertoire Formation. Advances in Immunology, 2008, 99, 59-94.	1.1	75
96	Hsp90-mediated Assembly of the 26 S Proteasome Is Involved in Major Histocompatibility Complex Class I Antigen Processing. Journal of Biological Chemistry, 2008, 283, 28060-28065.	1.6	40
97	Allele-Selective Effect of PA28 in MHC Class I Antigen Processing. Journal of Immunology, 2008, 181, 1655-1664.	0.4	23
98	Critical role of PA28Â in hepatitis C virus-associated steatogenesis and hepatocarcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1661-1666.	3.3	192
99	Involvement of the PA28γ-Dependent Pathway in Insulin Resistance Induced by Hepatitis C Virus Core Protein. Journal of Virology, 2007, 81, 1727-1735.	1.5	121
100	Rpn10-Mediated Degradation of Ubiquitinated Proteins Is Essential for Mouse Development. Molecular and Cellular Biology, 2007, 27, 6629-6638.	1.1	92
101	Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice. Cell, 2007, 131, 1149-1163.	13.5	1,925
102	Regulation of CD8+ T Cell Development by Thymus-Specific Proteasomes. Science, 2007, 316, 1349-1353.	6.0	504
103	Cooperation of Multiple Chaperones Required for the Assembly ofÂMammalian 20S Proteasomes. Molecular Cell, 2006, 24, 977-984.	4.5	124
104	Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 2006, 441, 880-884.	13.7	3,209
105	A novel proteasome interacting protein recruits the deubiquitinating enzyme UCH37 to 26S proteasomes. EMBO Journal, 2006, 25, 4524-4536.	3.5	219
106	A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO Journal, 2006, 25, 4877-4887.	3.5	663
107	Multiple chaperone-assisted formation of mammalian 20S proteasomes. IUBMB Life, 2006, 58, 344-348.	1.5	11
108	The involvement of immunoproteasomes in induction of MHC class I-restricted immunity targeting Toxoplasma SAG1. Microbes and Infection, 2006, 8, 1045-1053.	1.0	22

#	Article	IF	CITATIONS
109	The ubiquitin–proteasome system plays essential roles in presenting an 8-mer CTL epitope expressed in APC to corresponding CD8+ T cells. International Immunology, 2006, 18, 679-687.	1.8	19
110	In vivoevidence of CHIP up-regulation attenuating tau aggregation. Journal of Neurochemistry, 2005, 94, 1254-1263.	2.1	186
111	A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature, 2005, 437, 1381-1385.	13.7	218
112	Regulation of anaphylactic responses by phosphatidylinositol phosphate kinase type I α. Journal of Experimental Medicine, 2005, 201, 859-870.	4.2	55
113	A novel DNA vaccine based on ubiquitin–proteasome pathway targeting â€~self'-antigens expressed in melanoma/melanocyte. Gene Therapy, 2005, 12, 1049-1057.	2.3	39
114	Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. Journal of Cell Biology, 2005, 169, 425-434.	2.3	2,180
115	Co-chaperone CHIP Associates with Expanded Polyglutamine Protein and Promotes Their Degradation by Proteasomes. Journal of Biological Chemistry, 2005, 280, 11635-11640.	1.6	283
116	Large―and Smallâ€Scale Purification of Mammalian 26S Proteasomes. Methods in Enzymology, 2005, 399, 227-240.	0.4	15
117	Purification and Assay of the Chaperoneâ€Dependent Ubiquitin Ligase of the Carboxyl Terminus of Hsc70â€Interacting Protein. Methods in Enzymology, 2005, 398, 271-279.	0.4	8
118	Ubiquitin-fusion degradation pathway plays an indispensable role in naked DNA vaccination with a chimeric gene encoding a syngeneic cytotoxic T lymphocyte epitope of melanocyte and green fluorescent protein. Immunology, 2004, 112, 567-574.	2.0	28
119	Ligand-dependent switching of ubiquitin–proteasome pathways for estrogen receptor. EMBO Journal, 2004, 23, 4813-4823.	3.5	134
120	Structural basis for distinct roles of Lys63- and Lys48-linked polyubiquitin chains. Genes To Cells, 2004, 9, 865-875.	0.5	147
121	Formalin-fixed tumor cells effectively induce antitumor immunity both in prophylactic and therapeutic conditions. Journal of Dermatological Science, 2004, 34, 209-219.	1.0	9
122	CHIP: a quality-control E3 ligase collaborating with molecular chaperones. International Journal of Biochemistry and Cell Biology, 2003, 35, 572-578.	1.2	207
123	Sterol Regulatory Element-binding Proteins Are Negatively Regulated through SUMO-1 Modification Independent of the Ubiquitin/26 S Proteasome Pathway. Journal of Biological Chemistry, 2003, 278, 16809-16819.	1.6	100
124	Proteasome Activator PA28γ-Dependent Nuclear Retention and Degradation of Hepatitis C Virus Core Protein. Journal of Virology, 2003, 77, 10237-10249.	1.5	143
125	Dorfin Ubiquitylates Mutant SOD1 and Prevents Mutant SOD1-mediated Neurotoxicity. Journal of Biological Chemistry, 2002, 277, 36793-36798.	1.6	174
126	Two Distinct Pathways Mediated by PA28 and hsp90 in Major Histocompatibility Complex Class I Antigen Processing. Journal of Experimental Medicine, 2002, 196, 185-196.	4.2	68

#	Article	IF	CITATIONS
127	Nucleotide sequence analysis of the â^1⁄435-kb segment containing interferon-γ-inducible mouse proteasome activator genes. Immunogenetics, 2001, 53, 119-129.	1.2	13
128	CHIP is a chaperoneâ€dependent E3 ligase that ubiquitylates unfolded protein. EMBO Reports, 2001, 2, 1133-1138.	2.0	516
129	Immunoproteasome assembly and antigen presentation in mice lacking both PA28alpha and PA28beta. EMBO Journal, 2001, 20, 5898-5907.	3.5	141
130	Effects of human lung fibroblasts on eosinophil degranulation*. Allergy: European Journal of Allergy and Clinical Immunology, 2000, 55, 1170-1178.	2.7	8
131	T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-γ. Nature, 2000, 408, 600-605.	13.7	1,247
132	Developmentally regulated, alternative splicing of the Rpn10 gene generates multiple forms of 26S proteasomes. EMBO Journal, 2000, 19, 4144-4153.	3.5	45
133	Growth Retardation in Mice Lacking the Proteasome Activator PA28Î ³ . Journal of Biological Chemistry, 1999, 274, 38211-38215.	1.6	164
134	Splice acceptor site mutation of the transporter associated with antigen processing-1 gene in human bare lymphocyte syndrome. Journal of Clinical Investigation, 1999, 103, 755-758.	3.9	53
135	Ubiquity and Diversity of the Proteasome System. , 0, , 129-156.		1
136	Controlled Tetradeuteration of Straightâ€Chain Fatty Acids: Synthesis, Application, and InsightÂinto the Metabolism of Oxidized Linoleic Acid. Angewandte Chemie, 0, , .	1.6	0