Decheng Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3916911/publications.pdf Version: 2024-02-01

DECHENC YANC

#	Article	IF	CITATIONS
1	Poly(rC) binding protein 1 benefits coxsackievirus B3 infection via suppressing the translation of p62/SQSTM1. Virus Research, 2022, 318, 198851.	1.1	1
2	NFAT5-Mediated Signalling Pathways in Viral Infection and Cardiovascular Dysfunction. International Journal of Molecular Sciences, 2021, 22, 4872.	1.8	6
3	Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility <i>In Vivo</i> . Journal of Virology, 2020, 95, .	1.5	4
4	Cleavage of Desmosomal Cadherins Promotes Î ³ -Catenin Degradation and Benefits Wnt Signaling in Coxsackievirus B3-Induced Destruction of Cardiomyocytes. Frontiers in Microbiology, 2020, 11, 767.	1.5	7
5	Cleavage and degradation of EDEM1 promotes coxsackievirus B3 replication via ATF6aâ€mediated unfolded protein response signalling. Cellular Microbiology, 2020, 22, e13198.	1.1	3
6	Expression Profile and Function Analysis of Long Non-coding RNAs in the Infection of Coxsackievirus B3. Virologica Sinica, 2019, 34, 618-630.	1.2	10
7	Cleavage and Sub-Cellular Redistribution of Nuclear Pore Protein 98 by Coxsackievirus B3 Protease 2A Impairs Cardioprotection. Frontiers in Cellular and Infection Microbiology, 2019, 9, 265.	1.8	12
8	Intercalated discs: cellular adhesion and signaling in heart health and diseases. Heart Failure Reviews, 2019, 24, 115-132.	1.7	50
9	Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2. Cellular Microbiology, 2017, 19, e12725.	1.1	14
10	Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication. PLoS Pathogens, 2017, 13, e1006744.	2.1	17
11	Myocarditis. Circulation Research, 2016, 118, 496-514.	2.0	363
12	Emodin inhibits coxsackievirus B3 replication via multiple signalling cascades leading to suppression of translation. Biochemical Journal, 2016, 473, 473-485.	1.7	18
13	Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death and Differentiation, 2016, 23, 828-840.	5.0	29
14	Hsp70-1: upregulation via selective phosphorylation of heat shock factor 1 during coxsackieviral infection and promotion of viral replication via the AU-rich element. Cellular and Molecular Life Sciences, 2016, 73, 1067-1084.	2.4	13
15	Coxsackievirus B3 replication and pathogenesis. Future Microbiology, 2015, 10, 629-653.	1.0	145
16	Coxsackievirus-Induced miR-21 Disrupts Cardiomyocyte Interactions via the Downregulation of Intercalated Disk Components. PLoS Pathogens, 2014, 10, e1004070.	2.1	46
17	P58 ^{IPK} inhibits coxsackievirus-induced apoptosis via the PI3K/Akt pathway requiring activation of ATF6a and subsequent upregulation of mitofusin 2. Cellular Microbiology, 2014, 16, 411-424.	1.1	6
18	Antiviral Activity of an Isatin Derivative via Induction of PERK-Nrf2-Mediated Suppression of Cap-Independent Translation. ACS Chemical Biology, 2014, 9, 1015-1024.	1.6	32

DECHENG YANG

#	Article	IF	CITATIONS
19	MiR-126 promotes coxsackievirus replication by mediating cross-talk of ERK1/2 and Wnt/Ĵ²-catenin signal pathways. Cellular and Molecular Life Sciences, 2013, 70, 4631-4644.	2.4	58
20	An ERK-p38 Subnetwork Coordinates Host Cell Apoptosis and Necrosis during Coxsackievirus B3 Infection. Cell Host and Microbe, 2013, 13, 67-76.	5.1	39
21	MicroRNA-203 enhances Coxsackievirus B3 replication through targeting zinc finger protein-148. Cellular and Molecular Life Sciences, 2013, 70, 277-291.	2.4	45
22	Genome-wide microRNA and messenger RNA profiling in rodent liver development implicates mir302b and mir20a in repressing transforming growth factor-beta signaling. Hepatology, 2013, 57, 2491-2501.	3.6	17
23	Viral Replication Strategies: Manipulation of ER Stress Response Pathways and Promotion of IRES-Dependent Translation. , 2013, , .		0
24	IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Frontiers in Microbiology, 2012, 3, 92.	1.5	30
25	Current advances in Phi29 pRNA biology and its application in drug delivery. Wiley Interdisciplinary Reviews RNA, 2012, 3, 469-481.	3.2	25
26	The immunity-related GTPase Irgm3 relieves endoplasmic reticulum stress response during coxsackievirus B3 infection via a PI3K/Akt dependent pathway. Cellular Microbiology, 2012, 14, 133-146.	1.1	21
27	Targeted Delivery of Mutant Tolerant Anti-Coxsackievirus Artificial MicroRNAs Using Folate Conjugated Bacteriophage Phi29 pRNA. PLoS ONE, 2011, 6, e21215.	1.1	52
28	Pro-apoptotic activity of mBNIP-21 depends on its BNIP-2 and Cdc42GAP homology (BCH) domain and is enhanced by coxsackievirus B3 infection. Cellular Microbiology, 2010, 12, 599-614.	1.1	8
29	Coxsackievirus B3 Infection Activates the Unfolded Protein Response and Induces Apoptosis through Downregulation of p58 ^{IPK} and Activation of CHOP and SREBP1. Journal of Virology, 2010, 84, 8446-8459.	1.5	85
30	Exploiting the Therapeutic Potential of MicroRNAs in Viral Diseases. Molecular Diagnosis and Therapy, 2010, 14, 271-282.	1.6	29
31	Recent Advances in Biological Strategies for Targeted Drug Delivery. Cardiovascular & Hematological Disorders Drug Targets, 2009, 9, 206-221.	0.2	29
32	CXCL10 Inhibits Viral Replication Through Recruitment of Natural Killer Cells in Coxsackievirus B3-Induced Myocarditis. Circulation Research, 2009, 104, 628-638.	2.0	91
33	Targeted delivery of anti-coxsackievirus siRNAs using ligand-conjugated packaging RNAs. Antiviral Research, 2009, 83, 307-316.	1.9	45
34	Differential Gene Expression in Coxsackievirus Infection and Its Effect on Viral Pathogenesis. , 2009, , 495-524.		0
35	Host Signaling Responses to Coxsackievirus Infection. , 2009, , 525-545.		0
36	Focal adhesion kinase mediates the interferon-Î ³ -inducible GTPase-induced phosphatidylinositol 3-kinase/Akt survival pathway and further initiates a positive feedback loop of NF-κB activation. Cellular Microbiology, 2008, 10, 1787-1800.	1.1	29

DECHENG YANG

#	Article	IF	CITATIONS
37	MicroRNAs-Based Therapeutic Strategy for Virally Induced Diseases. Current Drug Discovery Technologies, 2008, 5, 49-58.	0.6	22
38	MicroRNA: an Emerging Therapeutic Target and Intervention Tool. International Journal of Molecular Sciences, 2008, 9, 978-999.	1.8	158
39	Antisense DNA and RNA agents against picornaviruses. Frontiers in Bioscience - Landmark, 2008, Volume, 4707.	3.0	5
40	The Signaling Duel Between Virus and Host: Impact on Coxsackieviral Pathogenesis. , 2008, , 267-284.		0
41	Specific interaction of HeLa cell proteins with coxsackievirus B3 3'UTR: La autoantigen binds the 3' and 5' UTR independently of the poly(A) tail. Cellular Microbiology, 2007, 9, 1705-1715.	1.1	16
42	Coxsackievirus B3 proteases 2A and 3C induce apoptotic cell death through mitochondrial injury and cleavage of eIF4GI but not DAP5/p97/NAT1. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 513-524.	2.2	128
43	Antisense DNA and RNA: Potential Therapeutics for Viral Infection. Anti-Infective Agents in Medicinal Chemistry, 2006, 5, 367-377.	0.6	0
44	Inhibition of Coxsackievirus B3 in Cell Cultures and in Mice by Peptide-Conjugated Morpholino Oligomers Targeting the Internal Ribosome Entry Site. Journal of Virology, 2006, 80, 11510-11519.	1.5	64
45	Specific interactions of mouse organ proteins with the 5′untranslated region of coxsackievirus B3: Potential determinants of viral tissue tropism. Journal of Medical Virology, 2005, 77, 414-424.	2.5	32
46	Inhibition of Coxsackievirus B3 Replication by Small Interfering RNAs Requires Perfect Sequence Match in the Central Region of the Viral Positive Strand. Journal of Virology, 2005, 79, 2151-2159.	1.5	87
47	A phosphorothioate antisense oligodeoxynucleotide specifically inhibits coxsackievirus B3 replication in cardiomyocytes and mouse hearts. Laboratory Investigation, 2004, 84, 703-714.	1.7	36
48	A Shine-Dalgarno-like Sequence Mediates in Vitro Ribosomal Internal Entry and Subsequent Scanning for Translation Initiation of Coxsackievirus B3 RNA. Virology, 2003, 305, 31-43.	1.1	31
49	Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology, 2003, 313, 147-157.	1.1	103
50	Proteasome Inhibition Reduces Coxsackievirus B3 Replication in Murine Cardiomyocytes. American Journal of Pathology, 2003, 163, 381-385.	1.9	74
51	Overexpression of Interferon-γ-inducible GTPase Inhibits Coxsackievirus B3-induced Apoptosis through the Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway and Inhibition of Viral Replication. Journal of Biological Chemistry, 2003, 278, 33011-33019.	1.6	55
52	Nip21 Gene Expression Reduces Coxsackievirus B3 Replication by Promoting Apoptotic Cell Death via a Mitochondria-Dependent Pathway. Circulation Research, 2002, 90, 1251-1258.	2.0	42
53	Coxsackievirus B3 Replication Is Reduced by Inhibition of the Extracellular Signal-Regulated Kinase (ERK) Signaling Pathway. Journal of Virology, 2002, 76, 3365-3373.	1.5	187
54	Specific interactions of HeLa cell proteins with Coxsackievirus B3 RNA: La autoantigen binds differentially to multiple sites within the 5′ untranslated region. Virus Research, 2002, 90, 23-36.	1.1	21

DECHENG YANG

0

#	Article	IF	CITATIONS
55	Genetic Determinants of Coxsackievirus B3 Pathogenesis. Annals of the New York Academy of Sciences, 2002, 975, 169-179.	1.8	19
56	Specific Inhibition of Coxsackievirus B3 Translation and Replication by Phosphorothioate Antisense Oligodeoxynucleotides. Antimicrobial Agents and Chemotherapy, 2001, 45, 1043-1052.	1.4	22
57	Host Gene Regulation During Coxsackievirus B3 Infection in Mice. Circulation Research, 2000, 87, 328-334.	2.0	107
58	Viral Myocarditis. Circulation Research, 1999, 84, 704-712.	2.0	53
59	Interaction of viral proteins with host cell death machinery. Cell Death and Differentiation, 1998, 5, 653-659.	5.0	31
60	Caspase Activation and Specific Cleavage of Substrates after Coxsackievirus B3-Induced Cytopathic Effect in HeLa Cells. Journal of Virology, 1998, 72, 7669-7675.	1.5	161
61	MYOCARDITIS AS SYSTEMIC DISEASE: NEW PERSPECTIVES ON PATHOGENESIS. Clinical and Experimental Pharmacology and Physiology, 1997, 24, 997-1003.	0.9	18
62	In VitroMutational and Inhibitory Analysis of thecis-Acting Translational Elements within the 5′ Untranslated Region of Coxsackievirus B3: Potential Targets for Antiviral Action of Antisense Oligomers. Virology, 1997, 228, 63-73.	1.1	63
63	Nucleic Acid-Based Strategies for the Treatment of Coxsackievirus-Induced Myocarditis. , 0, , .		0

64 New Trends in the Development of Treatments of Viral Myocarditis. , 0, , .