
Salvatore Cozzolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3916807/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orchid diversity: an evolutionary consequence of deception?. Trends in Ecology and Evolution, 2005, 20, 487-494.	8.7	437
2	Evolution of reproductive isolation in plants. Heredity, 2009, 102, 31-38.	2.6	245
3	PATTERNS OF REPRODUCTIVE ISOLATION IN MEDITERRANEAN DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2007, 61, 2623-2642.	2.3	186
4	Herbivory and floral signaling: phenotypic plasticity and tradeoffs between reproduction and indirect defense. New Phytologist, 2014, 203, 257-266.	7.3	139
5	Sympatric bromeliad species (Pitcairnia spp.) facilitate tests of mechanisms involved in species cohesion and reproductive isolation in Neotropical inselbergs. Molecular Ecology, 2011, 20, 3185-3201.	3.9	138
6	Phylogeny and Evolution of Orchis and Allied Genera Based on ITS DNA Variation: Morphological Gaps and Molecular Continuity. Molecular Phylogenetics and Evolution, 1999, 13, 67-76.	2.7	125
7	FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS. Evolution; International Journal of Organic Evolution, 2011, 65, 2606-2620.	2.3	112
8	Evolution of Postzygotic Reproductive Isolation in a Guild of Deceptive Orchids. American Naturalist, 2008, 171, 315-326.	2.1	100
9	Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive <i>Ophrys</i> orchids. New Phytologist, 2015, 207, 377-389.	7.3	98
10	Hybridization and introgression across different ploidy levels in the Neotropical orchids <i>Epidendrum fulgens</i> and <i>E.Âpuniceoluteum</i> (Orchidaceae). Molecular Ecology, 2010, 19, 3981-3994.	3.9	94
11	Pollination Efficiency and the Evolution of Specialized Deceptive Pollination Systems. American Naturalist, 2010, 175, 98-105.	2.1	91
12	Variability in Floral Scent in Rewarding and Deceptive Orchids: The Signature of Pollinator-imposed Selection?. Annals of Botany, 2007, 100, 757-765.	2.9	89
13	Evidence for pollinator sharing in Mediterranean nectar-mimic orchids: absence of premating barriers?. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1271-1278.	2.6	88
14	Evolution of sexual mimicry in the orchid subtribe orchidinae: the role of preadaptations in the attraction of male bees as pollinators. BMC Evolutionary Biology, 2008, 8, 27.	3.2	88
15	Hybrid floral scent novelty drives pollinator shift in sexually deceptive orchids. BMC Evolutionary Biology, 2010, 10, 103.	3.2	86
16	Fineâ€scale phylogeographical analysis of Mediterranean Anacamptis palustris (Orchidaceae) populations based on chloroplast minisatellite and microsatellite variation. Molecular Ecology, 2003, 12, 2783-2792.	3.9	73
17	Hybridization and conservation of Mediterranean orchids: Should we protect the orchid hybrids or the orchid hybrid zones?. Biological Conservation, 2006, 129, 14-23.	4.1	73
18	The strength of reproductive isolation in two hybridizing food-deceptive orchid species. Molecular Ecology, 2007, 16, 2855-2866.	3.9	72

#	Article	IF	CITATIONS
19	Phylogeography and genetic differentiation along the distributional range of the orchid Epidendrum fulgens: a Neotropical coastal species not restricted to glacial refugia. Journal of Biogeography, 2011, 38, 1923-1935.	3.0	72
20	Evidence for reproductive isolate selection in Mediterranean orchids: karyotype differences compensate for the lack of pollinator specificity. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S259-62.	2.6	71
21	Pollinator convergence and the nature of species' boundaries in sympatric Sardinian Ophrys (Orchidaceae). Annals of Botany, 2009, 104, 497-506.	2.9	70
22	Floral Scent in Foodâ€Deceptive Orchids: Species Specificity and Sources of Variability. Plant Biology, 2007, 9, 720-729.	3.8	62
23	MÉNAGE À TROIS-TWO ENDEMIC SPECIES OF DECEPTIVE ORCHIDS AND ONE POLLINATOR SPECIES. Evolution; International Journal of Organic Evolution, 2009, 63, 2222-2234.	2.3	61
24	Specificity in pollination and consequences for postmating reproductive isolation in deceptive Mediterranean orchids. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 3037-3046.	4.0	60
25	Alien interference: disruption of infochemical networks by invasive insect herbivores. Plant, Cell and Environment, 2014, 37, 1854-1865.	5.7	55
26	Pollination Syndromes in Mediterranean Orchids—Implications for Speciation, Taxonomy and Conservation. Botanical Review, The, 2010, 76, 220-240.	3.9	54
27	Polymorphism of postmating reproductive isolation within plant species. Taxon, 2010, 59, 1367-1374.	0.7	53
28	Genic rather than genomeâ€wide differences between sexually deceptive <i><scp>O</scp>phrys</i> orchids with different pollinators. Molecular Ecology, 2014, 23, 6192-6205.	3.9	52
29	PHYLOGEOGRAPHIC STRUCTURE AND OUTBREEDING DEPRESSION REVEAL EARLY STAGES OF REPRODUCTIVE ISOLATION IN THE NEOTROPICAL ORCHID <i>EPIDENDRUM DENTICULATUM</i> . Evolution; International Journal of Organic Evolution, 2013, 67, 2024-2039.	2.3	49
30	Rock outcrop orchids reveal the genetic connectivity and diversity of inselbergs of northeastern Brazil. BMC Evolutionary Biology, 2014, 14, 49.	3.2	49
31	Ecology and genetic diversity of the dense-flowered orchid, Neotinea maculata, at the centre and edge of its range. Annals of Botany, 2009, 104, 507-516.	2.9	46
32	Molecular analysis of orchid pollinaria and pollinaria-remains found on insects. Molecular Ecology, 2000, 9, 1911-1914.	3.9	45
33	Speciation processes in Eastern Mediterranean Orchis s.l. species: Molecular evidence and the role of pollination biology. Israel Journal of Plant Sciences, 2001, 49, 91-103.	0.5	45
34	Chloroplast DNA Inheritance in the Orchid Anacamptis palustris Using Single-Seed Polymerase Chain Reaction. Journal of Heredity, 2005, 96, 66-70.	2.4	43
35	COMPONENTS OF REPRODUCTIVE ISOLATION BETWEEN ORCHIS MASCULA AND ORCHIS PAUCIFLORA. Evolution; International Journal of Organic Evolution, 2013, 67, 2083-2093.	2.3	39
36	<i>Epidendrum</i> (Orchidaceae) as a model system for ecological and evolutionary studies in the Neotropics. Taxon, 2013, 62, 77-88.	0.7	39

#	Article	IF	CITATIONS
37	Pollinator shifts between <i><scp>O</scp>phrys sphegodes</i> populations: might adaptation to different pollinators drive population divergence?. Journal of Evolutionary Biology, 2013, 26, 2197-2208.	1.7	36
38	Exine Micromorphology of Orchidinae (Orchidoideae, Orchidaceae): Phylogenetic Constraints or Ecological Influences?. Annals of Botany, 2006, 98, 237-244.	2.9	35
39	Phylogeographic patterns, genetic affinities and morphological differentiation between Epipactis helleborine and related lineages in a Mediterranean glacial refugium. Annals of Botany, 2011, 107, 427-436.	2.9	35
40	Variation at a chloroplast minisatellite locus reveals the signature of habitat fragmentation and genetic bottlenecks in the rare orchid <i>Anacamptis palustris</i> (Orchidaceae). American Journal of Botany, 2003, 90, 1681-1687.	1.7	34
41	Herbivory Increases Fruit Set in Silene latifolia: A Consequence of Induced Pollinator-Attracting Floral Volatiles?. Journal of Chemical Ecology, 2015, 41, 622-630.	1.8	34
42	The complete plastid genomes of Ophrys iricolor and O. sphegodes (Orchidaceae) and comparative analyses with other orchids. PLoS ONE, 2018, 13, e0204174.	2.5	34
43	The evolutionary basis of reproductive isolation in Mediterranean orchids. Taxon, 2005, 54, 977-985.	0.7	32
44	Molecular Evolution of a Plastid Tandem Repeat Locus in an Orchid Lineage. Journal of Molecular Evolution, 2003, 57, S41-S49.	1.8	30
45	Genetic variation in time and space: the use of herbarium specimens to reconstruct patterns of genetic variation in the endangered orchid Anacamptis palustris. Conservation Genetics, 2007, 8, 629-639.	1.5	30
46	Transitions between self-compatibility and self-incompatibility and the evolution of reproductive isolation in the large and diverse tropical genus <i>Dendrobium</i> (Orchidaceae). Annals of Botany, 2015, 116, 457-467.	2.9	27
47	Increased divergence in floral morphology strongly reduces gene flow in sympatric sexually deceptive orchids with the same pollinator. Evolutionary Ecology, 2015, 29, 703-717.	1.2	25
48	The Complete Plastome Sequences of Eleven Capsicum Genotypes: Insights into DNA Variation and Molecular Evolution. Genes, 2018, 9, 503.	2.4	25
49	Genetic variation of relic tree species: the case of Mediterranean Zelkova abelicea (Lam.) Boisser and Z. sicula Di Pasquale, Garfı̀ and Quézel (Ulmaceae). Forest Ecology and Management, 2004, 197, 273-278.	3.2	23
50	Confirmation of hybridization among sympatric insular populations of Orchis mascula and O. provincialis. Plant Systematics and Evolution, 2005, 251, 131-142.	0.9	22
51	Speciation via floral heterochrony and presumed mycorrhizal host switching of endemic butterfly orchids on the Azorean archipelago. American Journal of Botany, 2014, 101, 979-1001.	1.7	22
52	Characterization of a minisatellite repeat locus in the chloroplast genome of Orchis palustris (Orchidaceae). Current Genetics, 2001, 39, 394-398.	1.7	21
53	Chloroplast microsatellite markers for the Neotropical orchid genus Epidendrum, and cross-amplification in other Laeliinae species (Orchidaceae). Conservation Genetics Resources, 2009, 1, 505-511.	0.8	19
54	Is floral divergence sufficient to maintain species boundaries upon secondary contact in Mediterranean food-deceptive orchids?. Heredity, 2012, 108, 219-228.	2.6	19

#	Article	IF	CITATIONS
55	Isolation and characterization of microsatellite loci in the Brazilian orchid Epidendrum fulgens. Conservation Genetics, 2008, 9, 1661-1663.	1.5	18
56	Habitat preference and floweringâ€ŧime variation contribute to reproductive isolation between diploid and autotetraploid <i>Anacamptis pyramidalis</i> . Journal of Evolutionary Biology, 2016, 29, 2070-2082.	1.7	18
57	Hybridization and geographic distribution shapes the spatial genetic structure of two co-occurring orchid species. Heredity, 2019, 123, 458-469.	2.6	18
58	Genome-wide analysis of plastome sequence variation and development of plastidial CAPS markers in common potato and related Solanum species. Genetic Resources and Crop Evolution, 2012, 59, 419-430.	1.6	17
59	Pollen transfer efficiency and its effect on inflorescence size in deceptive pollination strategies. Plant Biology, 2015, 17, 545-550.	3.8	17
60	Pollination Flow in Hybrid Formation between Orchis morio and Orchis papilionacea (Orchidaceae) in Two Different Habitats. International Journal of Plant Sciences, 1999, 160, 1153-1156.	1.3	16
61	A unique A. palustris lineage across the Otranto strait: botanical evidence for a past land-bridge?. Plant Systematics and Evolution, 2006, 262, 103-111.	0.9	16
62	Strong but permeable barriers to gene exchange between sister species of <i>Epidendrum</i> . American Journal of Botany, 2016, 103, 1472-1482.	1.7	16
63	Molecular Characterization of a Hybrid Zone between Orchis mascula and O. pauciflora in Southern Italy. Biologia Plantarum, 2000, 43, 13-18.	1.9	15
64	Isolation and characterization of microsatellite loci from the orchid Serapias vomeracea (Orchidaceae) and cross-priming to other Serapias species. Molecular Ecology Notes, 2001, 1, 279-280.	1.7	15
65	Fluctuating selection across years and phenotypic variation in food-deceptive orchids. PeerJ, 2017, 5, e3704.	2.0	15
66	Morphological and molecular characterization of a natural hybrid betweenOrchis laxiflora andO. morio (Orchidaceae). Plant Systematics and Evolution, 1997, 205, 147-155.	0.9	14
67	Heterochromatin distribution in selected taxa of the 42-chromosomes <i>Orchis s. l.</i> (Orchidaceae). Caryologia, 2002, 55, 55-62.	0.3	14
68	Just what is a genus? Comparing levels of postzygotic isolation to test alternative taxonomic hypotheses in Orchidaceae subtribe Orchidinae. Taxon, 2010, 59, 1754-1764.	0.7	14
69	Masquerading as pea plants: behavioural and morphological evidence for mimicry of multiple models in an Australian orchid. Annals of Botany, 2018, 122, 1061-1073.	2.9	14
70	Isolation and characterization of microsatellite loci in <i>Epidendrum puniceoluteum</i> , an endemic orchid from the Atlantic Rainforest. Molecular Ecology Resources, 2008, 8, 1114-1116.	4.8	13
71	Cross-amplification and characterization of microsatellite loci for the Neotropical orchid genus Epidendrum. Genetics and Molecular Biology, 2009, 32, 337-339.	1.3	13
72	Pollinator attraction in <i>Anacamptis papilionacea</i> (Orchidaceae): a food or a sex promise?. Plant Species Biology, 2009, 24, 109-114.	1.0	13

#	Article	IF	CITATIONS
73	Where do Sardinian orchids come from: a putative African origin for the insular population of Platanthera bifolia var. kuenkelei?. Botanical Journal of the Linnean Society, 2011, 167, 466-475.	1.6	13
74	Adaptive divergence generates distinct plasticÂresponses in two closely relatedÂ <i>Senecio</i> Âspecies. Evolution; International Journal of Organic Evolution, 2022, 76, 1229-1245.	2.3	13
75	Shift in flowering time allows diploid and autotetraploid Anacamptis pyramidalis (Orchidaceae) to coexist by reducing competition for pollinators. Botanical Journal of the Linnean Society, 2019, 191, 274-284.	1.6	12
76	Different filtering strategies of genotypingâ€byâ€sequencing data provide complementary resolutions of species boundaries and relationships in a clade of sexually deceptive orchids. Journal of Systematics and Evolution, 2020, 58, 133-144.	3.1	12
77	Morphological and molecular characterization of xOrchiaceras bergonii (Nanteuil) E.G. Cam. Giornale Botanico Italiano (Florence, Italy: 1962), 1994, 128, 861-867.	0.0	11
78	When polyploidy and hybridization produce a fuzzy taxon: the complex origin of the insular neoendemic <i>Neotinea commutata</i> (Orchidaceae). Botanical Journal of the Linnean Society, 2013, 173, 707-720.	1.6	11
79	Extensive genetic differentiation at a small geographical scale: reduced seed dispersal in a narrow endemic marsh orchid, Anacamptis robusta. Botanical Journal of the Linnean Society, 2017, 183, 429-438.	1.6	11
80	Cultivated Tomato (Solanum lycopersicum L.) Suffered a Severe Cytoplasmic Bottleneck during Domestication: Implications from Chloroplast Genomes. Plants, 2020, 9, 1443.	3.5	11
81	Herbivory affects male and female reproductive success differently in dioecious <i>Silene latifolia</i> . Entomologia Experimentalis Et Applicata, 2015, 157, 60-67.	1.4	9
82	Ecological factors driving pollination success in an orchid that mimics a range of Fabaceae. Botanical Journal of the Linnean Society, 2020, 194, 253-269.	1.6	9
83	Trick or treat? Pollinator attraction in <i>Vanilla pompona</i> (Orchidaceae). Biotropica, 2022, 54, 268-274.	1.6	9
84	The disjointed distribution of <i>Anacamptis longicornu</i> in the Westâ€Mediterranean: The role of vicariance versus longâ€distance seed dispersal. Taxon, 2011, 60, 1041-1049.	0.7	8
85	Pronounced differences in visitation by potential pollinators to co-occurring species of Fabaceae in the Southwest Australian biodiversity hotspot. Botanical Journal of the Linnean Society, 2020, 194, 308-325.	1.6	8
86	Characterization ofOrchis x dietrichianaBogenh., a natural orchid hybrid. Plant Biosystems, 1998, 132, 71-76.	1.6	7
87	Low pollination success of hybrids between nectar-rewarding and food-deceptive orchids. Plant Systematics and Evolution, 2014, 300, 1985-1993.	0.9	7
88	Species boundaries in the Ophrys iricolor group in Tunisia: do local endemics always matter?. Plant Systematics and Evolution, 2016, 302, 481-489.	0.9	7
89	Genetic diversity in natural populations of the endangered Neotropical orchid <i>Telipogon peruvianus</i> . Plant Species Biology, 2021, 36, 6-16.	1.0	7
90	DNA barcoding of native Caucasus herbal plants: potentials and limitations in complex groups and implications for phylogeographic patterns. Biodiversity Data Journal, 2021, 9, e61333.	0.8	7

SALVATORE COZZOLINO

#	Article	IF	CITATIONS
91	Hypervariable plastid locus variation and intron evolution in the Anacamptis palustris lineage. Genome, 2004, 47, 999-1003.	2.0	6
92	The relative contribution of diurnal and nocturnal pollinators to plant female fitness in a specialized nursery pollination system. AoB PLANTS, 2018, 10, ply002.	2.3	6
93	Rotating Arrays of Orchid Flowers: A Simple and Effective Method for Studying Pollination in Food Deceptive Plants. Diversity, 2020, 12, 286.	1.7	6
94	CONTRASTING THOUGHTS ABOUT DECEPTIVE ORCHIDS: A RESPONSE TO SOBEL AND RANDLE. Evolution; International Journal of Organic Evolution, 2009, 63, 2205-2209.	2.3	5
95	Phenotypic expression of floral traits in hybrid zones provides insights into their genetic architecture. New Phytologist, 2020, 227, 967-975.	7.3	5
96	Do floral and ecogeographic isolation allow the coâ€occurrence of two ecotypes of <i>Anacamptis papilionacea</i> (Orchidaceae)?. Ecology and Evolution, 2021, 11, 9917-9931.	1.9	4
97	High haplotype diversity with fineâ€scale structure in a recently established population of an endangered orchid. Plant Species Biology, 2020, 35, 224-232.	1.0	3
98	The effect of seasonality on developmental stages of anthetic ovule integuments in Mediterranean orchids. Protoplasma, 2020, 257, 613-618.	2.1	2
99	<i>In nomen omen</i> : the effect of flower distance on female reproductive success of the lax-flowered orchid <i>Anacamptis laxiflora</i> (Orchidaceae). Journal of Plant Ecology, 2021, 14, 451-464.	2.3	2
100	The effect of different chiral morphs on visitation rates and fruit set in the orchid <i>Spiranthes spiralis</i> . Plant Ecology and Diversity, 2017, 10, 97-104.	2.4	1
101	Do native and invasive herbivores have an effect on Brassica rapa pollination?. Plant Biology, 2019, 21, 927-934.	3.8	1
102	Ecological and phylogenetic constraints determine the stage of anthetic ovule development in orchids. American Journal of Botany, 2021, 108, 2405.	1.7	1
103	Hopping or Jumping on the Cliffs: The Unusual Phylogeographical and Demographic Structure of an Extremely Narrow Endemic Mediterranean Plant. Frontiers in Plant Science, 2021, 12, 737111.	3.6	1
104	Reproductive character displacement allows two sexually deceptive orchids to coexist and attract the same specific pollinator. Evolutionary Ecology, 2022, 36, 217.	1.2	1