Maria Victoria Aguilar-Pontes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915870/publications.pdf Version: 2024-02-01

MARIA VICTORIA

#	Article	IF	CITATIONS
1	Regulators of plant biomass degradation in ascomycetous fungi. Biotechnology for Biofuels, 2017, 10, 152.	6.2	202
2	Diversity of fungal feruloyl esterases: updated phylogenetic classification, properties, and industrial applications. Biotechnology for Biofuels, 2016, 9, 231.	6.2	133
3	The transcriptional activator GaaR of <i>AspergillusÂniger</i> is required for release and utilization of <scp>dâ€</scp> galacturonic acid from pectin. FEBS Letters, 2016, 590, 1804-1815.	2.8	64
4	The gold-standard genome of <i>Aspergillus niger</i> NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi. Studies in Mycology, 2018, 91, 61-78.	7.2	62
5	The molecular response of the whiteâ€rot fungus <scp><i>D</i></scp> <i>ichomitus squalens</i> to wood and nonâ€woody biomass as examined by transcriptome and exoproteome analyses. Environmental Microbiology, 2017, 19, 1237-1250.	3.8	55
6	In Silico Analysis of Putative Sugar Transporter Genes in Aspergillus niger Using Phylogeny and Comparative Transcriptomics. Frontiers in Microbiology, 2018, 9, 1045.	3.5	47
7	Comparative analysis of basidiomycete transcriptomes reveals a core set of expressed genes encoding plant biomass degrading enzymes. Fungal Genetics and Biology, 2018, 112, 40-46.	2.1	42
8	<scp>ARA</scp> 1 regulates not only <scp>l</scp> â€arabinose but also <scp>d</scp> â€galactose catabolism in <i>Trichoderma reesei</i> . FEBS Letters, 2018, 592, 60-70.	2.8	37
9	The pathway intermediate 2â€ketoâ€3â€deoxyâ€Lâ€galactonate mediates the induction of genes involved in Dâ€galacturonic acid utilization in <i>Aspergillus niger</i> . FEBS Letters, 2017, 591, 1408-1418.	2.8	25
10	The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Scientific Reports, 2018, 8, 6655.	3.3	24
11	Temporal transcriptome analysis of the white-rot fungus Obba rivulosa shows expression of a constitutive set of plant cell wall degradation targeted genes during growth on solid spruce wood. Fungal Genetics and Biology, 2018, 112, 47-54.	2.1	21
12	A community-driven reconstruction of the Aspergillus niger metabolic network. Fungal Biology and Biotechnology, 2018, 5, 16.	5.1	20
13	In vivo functional analysis of L-rhamnose metabolic pathway in Aspergillus niger: a tool to identify the potential inducer of RhaR. BMC Microbiology, 2017, 17, 214.	3.3	18
14	(Post-)Genomics approaches in fungal research. Briefings in Functional Genomics, 2014, 13, 424-439.	2.7	16
15	CreA-mediated repression of gene expression occurs at low monosaccharide levels during fungal plant biomass conversion in a time and substrate dependent manner. Cell Surface, 2021, 7, 100050.	3.0	16
16	Blocking hexose entry into glycolysis activates alternative metabolic conversion of these sugars and upregulates pentose metabolism in Aspergillus nidulans. BMC Genomics, 2018, 19, 214.	2.8	11
17	Enzymatic Adaptation of Podospora anserina to Different Plant Biomass Provides Leads to Optimized Commercial Enzyme Cocktails. Biotechnology Journal, 2019, 14, 1800185.	3.5	11
18	Identification of a gene encoding the last step of the L-rhamnose catabolic pathway in Aspergillus niger revealed the inducer of the pathway regulator. Microbiological Research, 2020, 234, 126426.	5.3	11

MARIA VICTORIA

#	Article	IF	CITATIONS
19	Deletion of either the regulatory gene ara1 or metabolic gene xki1 in Trichoderma reesei leads to increased CAZyme gene expression on crude plant biomass. Biotechnology for Biofuels, 2019, 12, 81.	6.2	10
20	Revisiting a â€~̃simple' fungal metabolic pathway reveals redundancy, complexity and diversity. Microbial Biotechnology, 2021, 14, 2525-2537.	4.2	10
21	The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Fungal Genetics and Biology, 2018, 112, 12-20.	2.1	9
22	Sexual crossing of thermophilic fungus Myceliophthora heterothallica improved enzymatic degradation of sugar beet pulp. Biotechnology for Biofuels, 2016, 9, 41.	6.2	6
23	l-Arabinose induces d-galactose catabolism via the Leloir pathway in Aspergillus nidulans. Fungal Genetics and Biology, 2019, 123, 53-59.	2.1	6
24	Transcriptome analysis of Aspergillus niger xlnR and xkiA mutants grown on corn Stover and soybean hulls reveals a highly complex regulatory network. BMC Genomics, 2019, 20, 853.	2.8	5
25	Characterization of d-xylose reductase, XyrB, from Aspergillus niger. Biotechnology Reports (Amsterdam, Netherlands), 2021, 30, e00610.	4.4	5
26	Metabolic Modeling of Fungi. , 2021, , 394-405.		0