Drazen Dujic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915636/publications.pdf

Version: 2024-02-01

87 3,183 23 52 g-index

87 87 87 87 2016

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Condition Health Monitoring of Modular Multilevel Converter Submodule Capacitors. IEEE Transactions on Power Electronics, 2022, 37, 3544-3554.	5.4	10
2	High-Frequency Operation of Series-Connected IGCTs for Resonant Converters. IEEE Transactions on Power Electronics, 2022, 37, 5664-5674.	5 . 4	6
3	IGCT Gate Unit for Zero-Voltage-Switching Resonant DC Transformer Applications. IEEE Transactions on Industrial Electronics, 2022, 69, 13799-13807.	5. 2	2
4	Design and Characterization of PCB Spiral Coils for Inductive Power Transfer in Medium-Voltage Applications. IEEE Transactions on Power Electronics, 2022, 37, 6168-6180.	5.4	7
5	Direct Current Transformer Impact on the DC Power Distribution Networks. IEEE Transactions on Smart Grid, 2022, 13, 2547-2556.	6.2	3
6	Resonant IGCT Soft-Switching: Zero-Voltage Switching or Zero-Current Switching?. IEEE Transactions on Power Electronics, 2022, 37, 10775-10783.	5.4	4
7	Detection of Broken Rotor Bars in a Cage Induction Machine Using DC Injection Braking. IEEE Access, 2022, 10, 49585-49598.	2.6	3
8	Robust and Cost-Effective Synchronization Scheme for a Multicell Grid Emulator. IEEE Transactions on Industrial Electronics, 2021, 68, 1851-1859.	5.2	8
9	Impact of Synchronous Generator Deexcitation Dynamics on the Protection in Marine DC Power Distribution Networks. IEEE Transactions on Transportation Electrification, 2021, 7, 267-275.	5.3	12
10	Scalable Solid-State Bus-Tie Switch for Flexible Shipboard Power Systems. IEEE Transactions on Power Electronics, 2021, 36, 239-247.	5 . 4	10
11	Equal Loss Distribution in Duty-Cycle Controlled H-Bridge LLC Resonant Converters. IEEE Transactions on Power Electronics, 2021, 36, 4937-4941.	5.4	5
12	Hardware-in-the-Loop Characterization of Source-Affected Output Characteristics of Cascaded <i>H</i> -Bridge Converter. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 3083-3094.	3.7	3
13	Smooth Power Direction Transition of a Bidirectional LLC Resonant Converter for DC Transformer Applications. IEEE Transactions on Power Electronics, 2021, 36, 6265-6275.	5.4	17
14	Thermally-Compensated Magnetic Core Loss Model for Time-Domain Simulations of Electrical Circuits. IEEE Transactions on Power Electronics, 2021, 36, 8193-8205.	5.4	4
15	Solid-State Technologies for Flexible and Efficient Marine DC Microgrids. IEEE Transactions on Smart Grid, 2021, 12, 2860-2868.	6.2	11
16	Comprehensive Comparison of Modular Multilevel Converter Internal Energy Balancing Methods. IEEE Transactions on Power Electronics, 2021, 36, 8962-8977.	5.4	17
17	Current Limiting in Overload Conditions of an <i>LLC</i> -Converter-Based DC Transformer. IEEE Transactions on Power Electronics, 2021, 36, 10660-10672.	5.4	7
18	Solid-State Technology for Shipboard DC Power Distribution Networks. IEEE Transactions on Industrial Electronics, 2021, 68, 12100-12108.	5.2	2

#	Article	IF	CITATIONS
19	Virtual Capacitor Concept for Computationally Efficient and Flexible Real-Time MMC Model. IEEE Access, 2021, 9, 144211-144226.	2.6	2
20	Hybrid Modular Multilevel Converter Design and Control for Variable Speed Pumped Hydro Storage Plants. IEEE Access, 2021, 9, 140050-140065.	2.6	3
21	Hardware-in-the-Loop Modeling of an Actively Fed MVDC Railway Systems of the Future. IEEE Access, 2021, 9, 151493-151506.	2.6	7
22	Distributed Real-Time Model of the M3C for HIL Systems Using Small-Scale Simulators. IEEE Open Journal of Power Electronics, 2021, 2, 603-613.	4.0	4
23	IGCT Low-Current Switchingâ€"TCAD and Experimental Characterization. IEEE Transactions on Industrial Electronics, 2020, 67, 6302-6311.	5.2	7
24	Extending Protection Selectivity in DC Shipboard Power Systems by Means of Additional Bus Capacitance. IEEE Transactions on Industrial Electronics, 2020, 67, 3673-3683.	5.2	27
25	Stability Analysis of Multi-Port MVDC Distribution Networks for All-Electric Ships. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8, 1164-1177.	3.7	18
26	Design Optimization of Two-Quadrant High-Current Low-Voltage Power Supply. IEEE Transactions on Power Electronics, 2020, 35, 11602-11611.	5.4	7
27	Solid-State Bus-Tie Switch for Shipboard Power Distribution Networks. IEEE Transactions on Transportation Electrification, 2020, 6, 1253-1264.	5.3	14
28	Protection Coordination for Reliable Marine DC Power Distribution Networks. IEEE Access, 2020, 8, 222813-222823.	2.6	10
29	Comprehensive Spectral Analysis of PWM Waveforms With Compensated DC-Link Oscillations. IEEE Transactions on Power Electronics, 2020, 35, 12898-12908.	5.4	4
30	On Power Scalability of Modular Multilevel Converters: Increasing Current Ratings Through Branch Paralleling. IEEE Power Electronics Magazine, 2020, 7, 53-63.	0.6	19
31	FEM-Based Statistical Data-Driven Modeling Approach for MFT Design Optimization. IEEE Transactions on Power Electronics, 2020, 35, 10863-10872.	5.4	10
32	100 kW, 10 kHz Medium-Frequency Transformer Design Optimization and Experimental Verification. IEEE Transactions on Power Electronics, 2019, 34, 1696-1708.	5.4	186
33	Leakage Flux Modeling of Medium-Voltage Phase-Shift Transformers for System-Level Simulations. IEEE Transactions on Power Electronics, 2019, 34, 2635-2654.	5.4	16
34	Modular Multilevel Converter Control Methods Performance Benchmark for Medium Voltage Applications. IEEE Transactions on Power Electronics, 2019, 34, 4967-4980.	5.4	11
35	Modeling Frequency-Dependent Core Loss of Ferrite Materials Using Permeance–Capacitance Analogy for System-Level Circuit Simulations. IEEE Transactions on Power Electronics, 2019, 34, 3658-3676.	5.4	13
36	Input-Admittance Passivity Compliance for Grid-Connected Converters With an LCL Filter. IEEE Transactions on Industrial Electronics, 2019, 66, 1089-1097.	5.2	31

#	Article	IF	CITATIONS
37	Multivariable High-Frequency Input-Admittance of Grid-Connected Converters: Modeling, Validation, and Implications on Stability. IEEE Transactions on Industrial Electronics, 2019, 66, 6505-6515.	5.2	23
38	Sensitivity Analysis of Medium-Frequency Transformer Designs for Solid-State Transformers. IEEE Transactions on Power Electronics, 2019, 34, 8356-8367.	5.4	64
39	Modeling Frequency Independent Hysteresis Effects of Ferrite Core Materials Using Permeance–Capacitance Analogy for System-Level Circuit Simulations. IEEE Transactions on Power Electronics, 2018, 33, 10055-10070.	5.4	19
40	Leakage Flux Modeling of Multiwinding Transformers for System-Level Simulations. IEEE Transactions on Power Electronics, 2018, 33, 2471-2483.	5.4	13
41	Stable and Passive High-Power Dual Active Bridge Converters Interfacing MVDC Grids. IEEE Transactions on Industrial Electronics, 2018, 65, 9561-9570.	5.2	28
42	Dynamic Assessment of Source–Load Interactions in Marine MVDC Distribution. IEEE Transactions on Industrial Electronics, 2017, 64, 4372-4381.	5.2	57
43	Virtual Submodule Concept for Fast Semi-Numerical Modular Multilevel Converter Loss Estimation. IEEE Transactions on Industrial Electronics, 2017, 64, 5286-5294.	5.2	18
44	Isolated DC/DC Structure Based on Modular Multilevel Converter. IEEE Transactions on Power Electronics, 2015, 30, 89-98.	5.4	283
45	Characterization of 6.5 kV IGBTs for High-Power Medium-Frequency Soft-Switched Applications. IEEE Transactions on Power Electronics, 2014, 29, 906-919.	5.4	65
46	Power Electronic Traction Transformerâ€"Medium Voltage Prototype. IEEE Transactions on Industrial Electronics, 2014, 61, 3257-3268.	5.2	356
47	Power Electronic Traction Transformer: Efficiency Improvements Under Light-Load Conditions. IEEE Transactions on Power Electronics, 2014, 29, 3971-3981.	5.4	88
48	Modular medium voltage drive for demanding applications. , 2014, , .		5
49	Characterization of a 6.5kV IGBT for medium-voltage high-power resonant DC-DC converter. , 2013, , .		11
50	Power Electronic Traction Transformer-Low Voltage Prototype. IEEE Transactions on Power Electronics, 2013, 28, 5522-5534.	5.4	236
51	Power electronic transformer (PET) converter: Design of a 1.2MW demonstrator for traction applications. , $2012, , .$		39
52	Advanced EMI input filtering for an industrial power supply with a resonant stage. , 2012, , .		0
53	Power electronic traction transformer technology. , 2012, , .		104
54	Modular DC/DC converter: Comparison of modulation methods. , 2012, , .		24

#	Article	IF	CITATIONS
55	Power Electronic Transformer Technology for Traction Applications $\hat{a} \in \text{``An Overview. Electronics'}, 2012, 16, .$	0.2	19
56	A versatile DC/DC converter based on modular multilevel converter for energy collection and distribution. , $2011, \dots$		51
57	Multidimensional Two-Level Multiphase Space Vector PWM Algorithm and Its Comparison With Multifrequency Space Vector PWM Method. IEEE Transactions on Industrial Electronics, 2011, 58, 465-475.	5.2	55
58	Switching Ripple Characteristics of Space Vector PWM Schemes for Five-Phase Two-Level Voltage Source Invertersâ€"Part 2: Current Ripple. IEEE Transactions on Industrial Electronics, 2011, 58, 2799-2808.	5.2	62
59	Switching Ripple Characteristics of Space Vector PWM Schemes for Five-Phase Two-Level Voltage Source Inverters—Part 1: Flux Harmonic Distortion Factors. IEEE Transactions on Industrial Electronics, 2011, 58, 2789-2798.	5.2	73
60	Harmonic distortion factor of space vector PWM for a five-phase inverter., 2010,,.		2
61	A four-motor drive supplied from a triple three-phase voltage source inverter. , 2010, , .		5
62	Current ripple in inverter-fed five-phase drives with space-vector PWM., 2010,,.		2
63	Dc bus utilisation in multiphase VSI supplied drives with a composite stator phase number. , 2010, , .		16
64	Analysis of Output Current-Ripple RMS in Multiphase Drives Using Polygon Approach. IEEE Transactions on Power Electronics, 2010, 25, 1838-1849.	5. 4	58
65	DC-bus utilisation in series-connected multi-phase machines supplied from a VSI with a composite phase number. , 2010, , .		3
66	Harmonic losses of multi-phase PWM inverter-fed drives., 2009,,.		3
67	A Modified Sector Based Space Vector PWM Technique for Fiveâ€Phase Drives. IEEJ Transactions on Electrical and Electronic Engineering, 2009, 4, 453-464.	0.8	5
68	A Synchronous Current Control Scheme for Multiphase Induction Motor Drives. IEEE Transactions on Energy Conversion, 2009, 24, 860-868.	3.7	128
69	The Impact of inverter dead time on performance of n-motor drives supplied from (2n+1)-leg VSI. , 2009, , .		3
70	Analysis of Output Current Ripple rms in Multiphase Drives Using Space Vector Approach. IEEE Transactions on Power Electronics, 2009, 24, 1926-1938.	5.4	104
71	A General PWM Method for a $(2n + 1)$ -Leg Inverter Supplying n Three-Phase Machines. IEEE Transactions on Industrial Electronics, 2009, 56, 4107-4118.	5.2	59
72	Five-leg inverter PWM technique for reduced switch count two-motor constant power applications. IET Electric Power Applications, 2008, 2, 275-287.	1.1	123

#	Article	IF	Citations
73	An improved PWM method for a five-leg inverter supplying two three-phase motors. , 2008, , .		22
74	A performance comparison of PWM techniques for five-leg VSIs supplying two-motor drives. , 2008, , .		35
75	A Space Vector PWM Scheme for Multifrequency Output Voltage Generation With Multiphase Voltage-Source Inverters. IEEE Transactions on Industrial Electronics, 2008, 55, 1943-1955.	5.2	106
76	General Modulation Strategy for Seven-Phase Inverters With Independent Control of Multiple Voltage Space Vectors. IEEE Transactions on Industrial Electronics, 2008, 55, 1921-1932.	5.2	69
77	Analytical Determination of DC-Bus Utilization Limits in Multiphase VSI Supplied AC Drives. IEEE Transactions on Energy Conversion, 2008, 23, 433-443.	3.7	106
78	Current control issues in rotor flux oriented multiphase induction motor drives. , 2008, , .		1
79	A two-motor centre-driven winder drive with a reduced switch count. , 2008, , .		10
80	A PWM method for seven-leg inverters supplying three three-phase motors. Power Electronics Specialist Conference (PESC), IEEE, 2008, , .	0.0	4
81	Experimental performance evaluation of a five-phase parallel-connected two-motor drive., 2008,,.		8
82	A Novel Five-leg Inverter PWM Technique for Two-Motor Centre-Driven Winders., 2007,,.		6
83	A Five-Phase Two-Motor Centre-Driven Winder with Series-Connected Motors. , 2007, , .		2
84	Space Vector PWM for Nine-Phase VSI with Sinusoidal Output Voltage Generation: Analysis and Implementation., 2007,,.		16
85	A two-motor centre-driven winder drive fed by a five-leg voltage source inverter. , 2007, , .		14
86	Continuous Carrier-Based vs. Space Vector PWM for Five-Phase VSI., 2007,,.		28
87	Continuous PWM Techniques for Sinusoidal Voltage Generation with Seven-Phase Voltage Source Inverters., 2007,,.		32