Guillermo Ivan Guerrero-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915595/publications.pdf Version: 2024-02-01

Guillermo Ivan

#	Article	IF	CITATIONS
1	Effects of the ionic size-asymmetry around a charged nanoparticle: unequal charge neutralization and electrostatic screening. Soft Matter, 2010, 6, 2056.	2.7	70
2	The electrical double layer for a fully asymmetric electrolyte around a spherical colloid: An integral equation study. Journal of Chemical Physics, 2005, 123, 034703.	3.0	66
3	Overcharging and charge reversal in the electrical double layer around the point of zero charge. Journal of Chemical Physics, 2010, 132, 054903.	3.0	62
4	Potential of mean force between identical charged nanoparticles immersed in a size-asymmetric monovalent electrolyte. Journal of Chemical Physics, 2011, 135, 164705.	3.0	39
5	A Graphics Processing Unit Implementation of Coulomb Interaction in Molecular Dynamics. Journal of Chemical Theory and Computation, 2010, 6, 3058-3065.	5.3	38
6	Entropic effects in the electric double layer of model colloids with size-asymmetric monovalent ions. Journal of Chemical Physics, 2011, 135, 054701.	3.0	36
7	Effective charges and virial pressure of concentrated macroion solutions. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9242-9246.	7.1	36
8	Large Counterions Boost the Solubility and Renormalized Charge of Suspended Nanoparticles. ACS Nano, 2013, 7, 9714-9723.	14.6	35
9	Charged hydrophobic colloids at an oil–aqueous phase interface. Physical Review E, 2015, 92, 062306.	2.1	33
10	Polarization Effects of Dielectric Nanoparticles in Aqueous Charge-Asymmetric Electrolytes. Journal of Physical Chemistry B, 2014, 118, 8854-8862.	2.6	31
11	Electrolyte-Mediated Assembly of Charged Nanoparticles. ACS Central Science, 2016, 2, 219-224.	11.3	31
12	Simulational and theoretical study of the spherical electrical double layer for a size-asymmetric electrolyte: The case of big coions. Physical Review E, 2009, 80, 021501.	2.1	28
13	Inversion of the Electric Field at the Electrified Liquid–Liquid Interface. Journal of Chemical Theory and Computation, 2013, 9, 1-7.	5.3	28
14	An exact method to obtain effective electrostatic interactions from computer simulations: The case of effective charge amplification. Journal of Chemical Physics, 2013, 139, 064709.	3.0	25
15	Enhancing and reversing the electric field at the oil–water interface with size-asymmetric monovalent ions. Soft Matter, 2013, 9, 6046.	2.7	25
16	Excluded volume and ion-ion correlation effects on the ionic atmosphere around B-DNA: Theory, simulations, and experiments. Journal of Chemical Physics, 2014, 141, 225103.	3.0	24
17	Quantifying the thickness of the electrical double layer neutralizing a planar electrode: the capacitive compactness. Physical Chemistry Chemical Physics, 2018, 20, 262-275.	2.8	24
18	Expansion and shrinkage of the electrical double layer in charge-asymmetric electrolytes: A non-linear Poisson-Boltzmann description. Journal of Molecular Liquids, 2019, 277, 104-114.	4.9	18

GUILLERMO IVAN

#	Article	IF	CITATIONS
19	The non-dominance of counterions in charge-asymmetric electrolytes: non-monotonic precedence of electrostatic screening and local inversion of the electric field by multivalent coions. Physical Chemistry Chemical Physics, 2016, 18, 21852-21864.	2.8	17
20	Coulomb interactions in charged fluids. Physical Review E, 2011, 84, 016707.	2.1	13
21	The dominance of small ions in the electric double layer of size- and charge-asymmetric electrolytes: a mean-field study on the charge reversal and surface charge amplification. Molecular Physics, 2015, 113, 1190-1205.	1.7	13
22	Understanding the interfacial behavior of lysozyme on Au (111) surfaces with multiscale simulations. Applied Physics Letters, 2017, 110, .	3.3	9
23	An experimental/theoretical method to measure the capacitive compactness of an aqueous electrolyte surrounding a spherical charged colloid. Journal of Chemical Physics, 2018, 148, 154703.	3.0	9
24	Control of Selective Ion Transfer across Liquid–Liquid Interfaces: A Rectifying Heterojunction Based on Immiscible Electrolytes. ACS Central Science, 2016, 2, 857-866.	11.3	8
25	On the expected value of the electrostatic potential produced by a charged electrode neutralized by a Coulombic fluid: The capacitive compactness. Journal of Chemical Physics, 2021, 154, 096101.	3.0	8
26	On the non-dominance of counterions in the 1:‹i>z planar electrical double layer of point-ions. Molecular Physics, 2021, 119, .	1.7	7
27	Size and/or charge asymmetry effects in coulombic fluids in the presence of external fields: From simple electrolytes to molten salts. Biophysical Chemistry, 2022, 282, 106747.	2.8	6
28	Local inversion of the mean electrostatic potential, maximum charge reversal, and capacitive compactness of concentrated 1:1 salts: The crucial role of the ionic excluded volume and ion correlations. Journal of Molecular Liquids, 2022, 361, 119566.	4.9	5
29	On the Time Transition Between Short- and Long-Time Regimes of Colloidal Particles in External Periodic Potentials. Frontiers in Physics, 2021, 9, .	2.1	3
30	Activation energy, spatial confinement, and mean first passage and escape times of a tracer in awormlike micellar fluid: an effective potential approach. Journal of Physics Condensed Matter, 2022, , .	1.8	1