Qiang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915502/publications.pdf

Version: 2024-02-01

1040056 1058476 14 239 9 14 citations h-index g-index papers 14 14 14 192 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Rheology, Chemical Composition, and Microstructure of the Asphalt Binder in Fine Aggregate Matrix after Different Long-Term Laboratory Aging Procedures. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	6
2	Laboratory and Field Performance Evaluation of High-Workability Ultra-Thin Asphalt Overlays. Materials, 2022, 15, 2123.	2.9	5
3	Characterization of fatigue performance of the warmâ€mix recycled asphalt mixture using different models. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 770-782.	3.4	4
4	Evaluation of cooling effect and pavement performance for thermochromic material modified asphalt mixtures under solar radiation. Construction and Building Materials, 2020, 261, 120589.	7.2	21
5	Determination of Construction Parameters of Porous Ultra-Thin Overlays Based on Laboratory Compaction Studies. Materials, 2020, 13, 4496.	2.9	5
6	Fuel oil corrosion resistance of asphalt mixtures. Construction and Building Materials, 2019, 220, 10-20.	7.2	16
7	Asphalt mixture design for porous ultra-thin overlay. Construction and Building Materials, 2019, 217, 251-264.	7.2	21
8	Laboratory evaluation of performance of porous ultra-thin overlay. Construction and Building Materials, 2019, 204, 28-40.	7.2	22
9	Performance Evaluation of Warm-Mix Recycled Asphalt Binders after Long-Term Aging. Journal of Testing and Evaluation, 2019, 47, 2889-2904.	0.7	8
10	Fatigue resistance investigation of warmâ€mix recycled asphalt binder, mastic, and fine aggregate matrix. Fatigue and Fracture of Engineering Materials and Structures, 2018, 41, 400-411.	3.4	23
11	Linear viscoelastic properties of warm-mix recycled asphalt binder, mastic, and fine aggregate matrix under different aging levels. Construction and Building Materials, 2018, 192, 99-109.	7.2	20
12	Evaluation of microstructure and damage evolution for asphalt pavements in an advanced repeated load permanent deformation test using X-ray computed tomography. Road Materials and Pavement Design, 2017, 18, 1135-1158.	4.0	26
13	Use of Rejuvenator, Styrene-Butadiene Rubber Latex, and Warm-Mix Asphalt Technology to Achieve Conventional Mixture Performance with 50% Reclaimed Asphalt Pavement. Transportation Research Record, 2016, 2575, 160-167.	1.9	22
14	A simple fatigue performance model of asphalt mixtures based on fracture energy. Construction and Building Materials, 2012, 27, 605-611.	7.2	40