Narayanan Neithalath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 2000, 22, 321-329.	10.7	665
2	The Filler Effect: The Influence of Filler Content and Surface Area on Cementitious Reaction Rates. Journal of the American Ceramic Society, 2013, 96, 1978-1990.	3.8	303
3	Characterizing pore volume, sizes, and connectivity in pervious concretes for permeability prediction. Materials Characterization, 2010, 61, 802-813.	4.4	292
4	Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 2008, 30, 486-496.	10.7	272
5	Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement and Concrete Composites, 2013, 39, 93-103.	10.7	244
6	Characterizing Enhanced Porosity Concrete using electrical impedance to predict acoustic and hydraulic performance. Cement and Concrete Research, 2006, 36, 2074-2085.	11.0	221
7	Analysis of calcium leaching behavior of plain and modified cement pastes in pure water. Cement and Concrete Composites, 2009, 31, 176-185.	10.7	203
8	Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cement and Concrete Research, 2008, 38, 429-436.	11.0	202
9	Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 402-412.	5.6	201
10	The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash. Cement and Concrete Research, 2013, 52, 196-207.	11.0	200
11	Pore structure features of pervious concretes proportioned for desired porosities and their performance prediction. Cement and Concrete Composites, 2011, 33, 778-787.	10.7	167
12	Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cement and Concrete Composites, 2012, 34, 809-818.	10.7	163
13	Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cement and Concrete Composites, 2010, 32, 399-410.	10.7	162
14	Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Construction and Building Materials, 2013, 45, 233-242.	7.2	156
15	Permeability Reduction in Pervious Concretes due to Clogging: Experiments and Modeling. Journal of Materials in Civil Engineering, 2010, 22, 741-751.	2.9	148
16	Compressive response of pervious concretes proportioned for desired porosities. Construction and Building Materials, 2011, 25, 4181-4189.	7.2	148
17	Microstructure, strength, and moisture stability of alkali activated glass powder-based binders. Cement and Concrete Composites, 2014, 45, 46-56.	10.7	147
18	On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cement and Concrete Composites, 2014, 51, 14-26.	10.7	140

#	Article	IF	CITATIONS
19	The influence of microencapsulated phase change material (PCM) characteristics on the microstructure and strength of cementitious composites: Experiments and finite element simulations. Cement and Concrete Composites, 2016, 73, 29-41.	10.7	128
20	Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Materials and Design, 2019, 167, 107634.	7.0	126
21	Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochimica Acta, 2012, 546, 32-43.	2.7	123
22	Chloride transport in fly ash and glass powder modified concretes – Influence of test methods on microstructure. Cement and Concrete Composites, 2010, 32, 148-156.	10.7	109
23	Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models. Cement and Concrete Research, 2015, 78, 252-262.	11.0	107
24	Electrical conductivity based characterization of plain and coarse glass powder modified cement pastes. Cement and Concrete Composites, 2007, 29, 656-666.	10.7	106
25	Ternary blends containing slag and interground/blended limestone: Hydration, strength, and pore structure. Construction and Building Materials, 2016, 102, 113-124.	7.2	103
26	Microstructural investigations on aerated concrete. Cement and Concrete Research, 2000, 30, 457-464.	11.0	99
27	Simple methods to estimate the influence of limestone fillers on reaction and property evolution in cementitious materials. Cement and Concrete Composites, 2013, 42, 20-29.	10.7	96
28	Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cement and Concrete Research, 2010, 40, 1041-1051.	11.0	94
29	Microstructural packing- and rheology-based binder selection and characterization for Ultra-high Performance Concrete (UHPC). Cement and Concrete Research, 2018, 103, 179-190.	11.0	94
30	Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties. Cement and Concrete Composites, 2019, 104, 103346.	10.7	94
31	Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration. Rheologica Acta, 2014, 53, 843-855.	2.4	89
32	The durability of cementitious composites containing microencapsulated phase change materials. Cement and Concrete Composites, 2017, 81, 66-76.	10.7	83
33	Fundamental insights into the compressive and flexural response of binder- and aggregate-optimized ultra-high performance concrete (UHPC). Cement and Concrete Composites, 2019, 98, 1-13.	10.7	83
34	Response of alkali activated fly ash mortars to microwave curing. Cement and Concrete Research, 2010, 40, 1688-1696.	11.0	79
35	Fracture behavior of pervious concretes: The effects of pore structure and fibers. Engineering Fracture Mechanics, 2014, 118, 1-16.	4.3	78
36	Acoustic performance and damping behavior of cellulose–cement composites. Cement and Concrete Composites, 2004, 26, 359-370.	10.7	72

#	Article	IF	CITATIONS
37	Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement and Concrete Research, 2013, 47, 31-42.	11.0	72
38	The filler effect: The influence of filler content and type on the hydration rate of tricalcium silicate. Journal of the American Ceramic Society, 2017, 100, 3316-3328.	3.8	70
39	The rheology of cementitious suspensions: A closer look at experimental parameters and property determination using common rheological models. Cement and Concrete Composites, 2015, 59, 38-48.	10.7	64
40	Synthesis and characterization of 3D-printable geopolymeric foams for thermally efficient building envelope materials. Cement and Concrete Composites, 2019, 104, 103377.	10.7	63
41	Monitoring the evolution of material structure in cement pastes and concretes using electrical property measurements. Construction and Building Materials, 2013, 49, 288-297.	7.2	61
42	Linking fresh paste microstructure, rheology and extrusion characteristics of cementitious binders for 3D printing. Journal of the American Ceramic Society, 2019, 102, 3951-3964.	3.8	59
43	Microstructural and 29Si MAS NMR spectroscopic evaluations of alkali cationic effects on fly ash activation. Cement and Concrete Composites, 2015, 57, 34-43.	10.7	56
44	Modeling the Influence of Pore Structure on the Acoustic Absorption of Enhanced Porosity Concrete. Journal of Advanced Concrete Technology, 2005, 3, 29-40.	1.8	55
45	Clinkering-free cementation by fly ash carbonation. Journal of CO2 Utilization, 2018, 23, 117-127.	6.8	55
46	The fracture response of blended formulations containing limestone powder: Evaluations using two-parameter fracture model and digital image correlation. Cement and Concrete Composites, 2014, 53, 316-326.	10.7	54
47	Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 2009, 39, 473-481.	11.0	53
48	Porous inclusions as hosts for phase change materials in cementitious composites: Characterization, thermal performance, and analytical models. Construction and Building Materials, 2017, 134, 574-584.	7.2	53
49	Crack Healing in Cementitious Mortars Using Enzyme-Induced Carbonate Precipitation: Quantification Based on Fracture Response. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	53
50	A critical examination of the influence of material characteristics and extruder geometry on 3D printing of cementitious binders. Cement and Concrete Composites, 2020, 112, 103671.	10.7	53
51	Extracting the performance predictors of Enhanced Porosity Concretes from electrical conductivity spectra. Cement and Concrete Research, 2007, 37, 796-804.	11.0	51
52	A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. Construction and Building Materials, 2013, 43, 428-435.	7.2	51
53	An electrical impedance investigation into the chloride ion transport resistance of alkali silicate powder activated slag concretes. Cement and Concrete Composites, 2013, 44, 58-68.	10.7	50
54	Mechanical and microstructural characterization of alkali sulfate activated high volume fly ash binders. Materials and Design, 2017, 122, 236-246.	7.0	50

Narayanan Neithalath

#	Article	IF	CITATIONS
55	Topological controls on the dissolution kinetics of glassy aluminosilicates. Journal of the American Ceramic Society, 2017, 100, 5521-5527.	3.8	48
56	Early-age temperature evolutions in concrete pavements containing microencapsulated phase change materials. Construction and Building Materials, 2017, 147, 466-477.	7.2	47
57	Elucidating the Role of the Aluminous Source on Limestone Reactivity in Cementitious Materials. Journal of the American Ceramic Society, 2015, 98, 4076-4089.	3.8	46
58	Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration. Materials Chemistry and Physics, 2011, 129, 569-579.	4.0	44
59	The influence of filler type and surface area on the hydration rates of calcium aluminate cement. Construction and Building Materials, 2015, 96, 657-665.	7.2	44
60	How Microstructure and Pore Moisture Affect Strength Gain in Portlandite-Enriched Composites That Mineralize CO ₂ . ACS Sustainable Chemistry and Engineering, 2019, 7, 13053-13061.	6.7	44
61	Confined Water in Layered Silicates: The Origin of Anomalous Thermal Expansion Behavior in Calcium-Silicate-Hydrates. ACS Applied Materials & Interfaces, 2016, 8, 35621-35627.	8.0	43
62	Simulation of chloride diffusion in fly ash and limestone-calcined clay cement (LC3) concretes and the influence of damage on service-life. Cement and Concrete Research, 2020, 130, 106010.	11.0	43
63	Machine learning-based accelerated property prediction of two-phase materials using microstructural descriptors and finite element analysis. Computational Materials Science, 2021, 191, 110328.	3.0	43
64	C–(N)–S–H and N–A–S–H gels: Compositions and solubility data at 25°C and 50°C. Journal of the American Ceramic Society, 2017, 100, 2700-2711.	3.8	41
65	Rheological evaluations of interground and blended cement–limestone suspensions. Construction and Building Materials, 2015, 79, 65-72.	7.2	40
66	Numerical simulations to quantify the influence of phase change materials (PCMs) on the early- and later-age thermal response of concrete pavements. Cement and Concrete Composites, 2017, 81, 11-24.	10.7	40
67	Synthesis and Properties of a Novel Structural Binder Utilizing the Chemistry of Iron Carbonation. ACS Applied Materials & Interfaces, 2014, 6, 8295-8304.	8.0	39
68	Factors influencing the density and compressive strength of aerated concrete. Magazine of Concrete Research, 2000, 52, 163-168.	2.0	38
69	Water Vapor Sorption in Cementitious Materials—Measurement, Modeling and Interpretation. Transport in Porous Media, 2014, 103, 69-98.	2.6	38
70	Effects of Irradiation on Albite's Chemical Durability. Journal of Physical Chemistry A, 2017, 121, 7835-7845.	2.5	37
71	Fracture process zone and tensile behavior of blended binders containing limestone powder. Cement and Concrete Research, 2015, 73, 51-62.	11.0	36
72	FigureÂof merit for the thermal performance of cementitious composites containing phase change materials. Cement and Concrete Composites, 2016, 65, 214-226.	10.7	36

#	Article	IF	CITATIONS
73	New insights into the prehydration of cement and its mitigation. Cement and Concrete Research, 2015, 70, 94-103.	11.0	34
74	The influences of soft and stiff inclusions on the mechanical properties of cementitious composites. Cement and Concrete Composites, 2016, 71, 153-165.	10.7	32
75	A microstructure-guided constitutive modeling approach for random heterogeneous materials: Application to structural binders. Computational Materials Science, 2016, 119, 52-64.	3.0	31
76	3D DEM Simulations of Drained Triaxial Compression of Sand Strengthened Using Microbially Induced Carbonate Precipitation. International Journal of Geomechanics, 2017, 17, .	2.7	31
77	Influence of composition and curing on drying shrinkage of aerated concrete. Materials and Structures/Materiaux Et Constructions, 2000, 33, 243-250.	3.1	29
78	Moisture and ionic transport in concretes containing coarse limestone powder. Cement and Concrete Composites, 2010, 32, 486-496.	10.7	29
79	Microstructural, Mechanical, and Durability Related Similarities in Concretes Based on OPC and Alkali-Activated Slag Binders. International Journal of Concrete Structures and Materials, 2014, 8, 289-299.	3.2	28
80	Crack propagation and strain localization in metallic particulate-reinforced cementitious mortars. Materials & Design, 2015, 79, 15-25.	5.1	28
81	Electrically driven chloride ion transport in blended binder concretes: Insights from experiments and numerical simulations. Cement and Concrete Research, 2014, 66, 1-10.	11.0	27
82	Electrical conductivity based microstructure and strength prediction of plain and modified concretes. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2010, 2, 83-94.	1.1	26
83	Characterization of toughening mechanisms in UHPC through image correlation and inverse analysis of flexural results. Cement and Concrete Composites, 2021, 122, 104157.	10.7	26
84	Pore- and micro-structural characterization of a novel structural binder based on iron carbonation. Materials Characterization, 2014, 98, 168-179.	4.4	25
85	The influence of slightly and highly soluble carbonate salts on phase relations in hydrated calcium aluminate cements. Journal of Materials Science, 2016, 51, 6062-6074.	3.7	25
86	The Influence of Water Activity on the Hydration Rate of Tricalcium Silicate. Journal of the American Ceramic Society, 2016, 99, 2481-2492.	3.8	24
87	Synthesis and characterization of economical, multi-functional porous ceramics based on abundant aluminosilicates. Materials and Design, 2018, 152, 10-21.	7.0	24
88	Particle-Scale Mechanisms in Undrained Triaxial Compression of Biocemented Sands: Insights from 3D DEM Simulations with Flexible Boundary. International Journal of Geomechanics, 2019, 19, .	2.7	24
89	Microstructure-guided numerical simulations to predict the thermal performance of a hierarchical cement-based composite material. Cement and Concrete Composites, 2018, 87, 20-28.	10.7	23
90	Flexural fracture response of a novel iron carbonate matrix – Glass fiber composite and its comparison to Portland cement-based composites. Construction and Building Materials, 2015, 93, 360-370.	7.2	22

#	Article	IF	CITATIONS
91	A refined, self-consistent Poisson-Nernst-Planck (PNP) model for electrically induced transport of multiple ionic species through concrete. Cement and Concrete Composites, 2017, 82, 80-94.	10.7	22
92	Examining the effects of microencapsulated phase change materials on early-age temperature evolutions in realistic pavement geometries. Cement and Concrete Composites, 2019, 103, 149-159.	10.7	22
93	Examining layer height effects on the flexural and fracture response of plain and fiber-reinforced 3D-printed beams. Cement and Concrete Composites, 2021, 124, 104254.	10.7	22
94	Restrained shrinkage cracking of cementitious composites containing soft PCM inclusions: A paste (matrix) controlled response. Materials and Design, 2017, 132, 367-374.	7.0	19
95	A comprehensive analysis of buildability of 3D-printed concrete and the use of bi-linear stress-strain criterion-based failure curves towards their prediction. Cement and Concrete Composites, 2022, 128, 104424.	10.7	19
96	Quantifying the Effects of Hydration Enhancement and Dilution in Cement Pastes Containing Coarse Glass Powder. Journal of Advanced Concrete Technology, 2008, 6, 397-408.	1.8	18
97	Finite element-based micromechanical modeling of the influence of phase properties on the elastic response of cementitious mortars. Construction and Building Materials, 2016, 127, 153-166.	7.2	18
98	Monovalent Ion Exchange Kinetics of Hydrated Calcium-Alumino Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2017, 56, 63-74.	3.7	18
99	A general method for retrieving thermal deformation properties of microencapsulated phase change materials or other particulate inclusions in cementitious composites. Materials and Design, 2017, 126, 259-267.	7.0	17
100	Strain sensing ability of metallic particulate reinforced cementitious composites: Experiments and microstructure-guided finite element modeling. Cement and Concrete Composites, 2018, 90, 225-234.	10.7	17
101	The effect of irradiation on the atomic structure and chemical durability of calcite and dolomite. Npj Materials Degradation, 2019, 3, .	5.8	17
102	Machine learning approaches to predict the micromechanical properties of cementitious hydration phases from microstructural chemical maps. Construction and Building Materials, 2020, 265, 120647.	7.2	17
103	Understanding the Energy Implications of Phase-Change Materials in Concrete Walls through Finite-Element Analysis. Journal of Energy Engineering - ASCE, 2014, 140, 04013009.	1.9	16
104	Strain energy and process zone based fracture characterization of a novel iron carbonate binding material. Engineering Fracture Mechanics, 2016, 156, 1-15.	4.3	16
105	Novel synthesis of lightweight geopolymer matrices from fly ash through carbonate-based activation. Materials Today Communications, 2018, 17, 266-277.	1.9	16
106	Role of Electrochemical Surface Potential and Irradiation on Garnet-Type Almandine's Dissolution Kinetics. Journal of Physical Chemistry C, 2018, 122, 17268-17277.	3.1	15
107	Quantitative 2D Restrained Shrinkage Cracking of Cement Paste with Wollastonite Microfibers. Journal of Materials in Civil Engineering, 2016, 28, .	2.9	14
108	Time, Temperature, and Cationic Dependence of Alkali Activation of Slag: Insights from Fourier Transform Infrared Spectroscopy and Spectral Deconvolution. Applied Spectroscopy, 2017, 71, 1795-1807.	2.2	14

#	Article	IF	CITATIONS
109	The effects of (diâ€;triâ€valent)â€cation partitioning and intercalant anionâ€type on the solubility of hydrotalcites. Journal of the American Ceramic Society, 2020, 103, 6025-6039.	3.8	14
110	New insights into the mechanisms of carbon dioxide mineralization by portlandite. AICHE Journal, 2021, 67, e17160.	3.6	14
111	Simulating the Fracture of Notched Mortar Beams through Extended Finite-Element Method and Peridynamics. Journal of Engineering Mechanics - ASCE, 2019, 145, 04019049.	2.9	13
112	Elucidating the nano-mechanical behavior of multi-component binders for ultra-high performance concrete. Construction and Building Materials, 2020, 243, 118214.	7.2	12
113	The Influence of Metakaolin on Limestone Reactivity in Cementitious Materials. RILEM Bookseries, 2015, , 11-19.	0.4	11
114	Experimental and Numerical Investigation of Fracture Behavior of Particle-Reinforced Alkali-Activated Slag Mortars. Journal of Materials in Civil Engineering, 2019, 31, 04019043.	2.9	11
115	Damage development in neutron-irradiated concrete in a test reactor: Hygro-thermal and mechanical simulations. Cement and Concrete Research, 2021, 142, 106349.	11.0	11
116	Damage assessment in cellulose–cement composites using dynamic mechanical characteristics. Cement and Concrete Composites, 2006, 28, 658-667.	10.7	10
117	Properties of Concrete Containing Vitreous Calcium Aluminosilicate Pozzolan. Transportation Research Record, 2008, 2070, 32-38.	1.9	10
118	Physico-chemical changes in nano-silica and silica fume modified cement pastes in response to leaching. International Journal of Materials and Structural Integrity, 2009, 3, 114.	0.1	10
119	Isothermal Stimulation of Mineral Dissolution Processes by Acoustic Perturbation. Journal of Physical Chemistry C, 2018, 122, 28665-28673.	3.1	10
120	Analysis of the influence of material parameters on electrical conductivity of cement pastes and concretes. Magazine of Concrete Research, 2009, 61, 257-270.	2.0	9
121	Evaluating the short- and long-term moisture transport phenomena in lightweight aggregate concretes. Magazine of Concrete Research, 2007, 59, 435-445.	2.0	8
122	A methodology to extract the component size distributions in interground composite (limestone) cements. Construction and Building Materials, 2016, 121, 328-337.	7.2	8
123	Rheology-Based Protocol to Establish Admixture Compatibility in Dense Cementitious Suspensions. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	8
124	Elucidating the influences of compliant microscale inclusions on the fracture behavior of cementitious composites. Cement and Concrete Composites, 2018, 94, 13-23.	10.7	8
125	Calcination-free production of calcium hydroxide at sub-boiling temperatures. RSC Advances, 2021, 11, 1762-1772.	3.6	8
126	Re-examining the influence of the inclusion characteristics on the drying shrinkage of cementitious composites. Construction and Building Materials, 2017, 146, 713-722.	7.2	7

#	Article	IF	CITATIONS
127	Temperature-Induced Aggregation in Portlandite Suspensions. Langmuir, 2020, 36, 10811-10821.	3.5	7
128	A thermodynamic framework for modelling thixotropic yield stress fluids: Application to cement pastes. Journal of Non-Newtonian Fluid Mechanics, 2020, 281, 104318.	2.4	7
129	Transfer (machine) learning approaches coupled with target data augmentation to predict the mechanical properties of concrete. Machine Learning With Applications, 2022, 8, 100271.	4.4	7
130	Predicting mechanical properties of ultrahigh temperature ceramics using machine learning. Journal of the American Ceramic Society, 2022, 105, 6851-6863.	3.8	7
131	Temperature-induced phase and microstructural transformations in a synthesized iron carbonate (siderite) complex. Materials and Design, 2016, 92, 189-199.	7.0	6
132	Elucidating the Crack Resistance of Alkaliâ€Activated Slag Mortars Using Coupled Fracture Tests and Image Correlation. Journal of the American Ceramic Society, 2016, 99, 273-280.	3.8	6
133	Atomic Dislocations and Bond Rupture Govern Dissolution Enhancement under Acoustic Stimulation. ACS Applied Materials & Interfaces, 2020, 12, 55399-55410.	8.0	6
134	Dispersing nano- and micro-sized portlandite particulates via electrosteric exclusion at short screening lengths. Soft Matter, 2020, 16, 3425-3435.	2.7	6
135	Comparative Analysis of the Influence of Sodium and Potassium Silicate Solutions on the Kinetics and Products of Slag Activation. Advances in Civil Engineering Materials, 2014, 3, 371-387.	0.6	6
136	Strength and Transport Properties of Concretes Modified with Coarse Limestone Powder to Compensate for Dilution Effects. Transportation Research Record, 2012, 2290, 130-138.	1.9	5
137	Stability of Calcium–Alumino Layered-Double-Hydroxide Nanocomposites in Aqueous Electrolytes. Industrial & Engineering Chemistry Research, 2018, 57, 13417-13426.	3.7	5
138	Relating the nano-mechanical response and qualitative chemical maps of multi-component ultra-high performance cementitious binders. Construction and Building Materials, 2020, 260, 119959.	7.2	5
139	The role of gas flow distributions on CO ₂ mineralization within monolithic cemented composites: coupled CFD-factorial design approach. Reaction Chemistry and Engineering, 2021, 6, 494-504.	3.7	5
140	A review of materials science-based models for mixture design and permeability prediction of pervious concretes. International Journal of Materials and Structural Integrity, 2015, 9, 108.	0.1	4
141	Mathematical morphology-based point cloud analysis techniques for geometry assessment of 3D printed concrete elements. Additive Manufacturing, 2022, 49, 102499.	3.0	4
142	PREDICTING THE ELASTIC MODULI OF ENHANCED POROSITY (PERVIOUS) CONCRETES USING RECONSTRUCTED 3D MATERIAL STRUCTURES. , 2009, , 275-289.		3
143	Finite element simulation of restrained shrinkage cracking of cementitious materials: Considering moisture diffusion, aging viscoelasticity, aleatory uncertainty, and the effects of soft/stiff inclusions. Finite Elements in Analysis and Design, 2020, 173, 103390.	3.2	3
144	Discrete Element Simulations of Rheological Response of Cementitious Binders as Applied to 3D Printing. RILEM Bookseries, 2019, , 102-112.	0.4	3

Narayanan Neithalath

#	Article	IF	CITATIONS
145	How clay particulates affect flow cessation and the coiling stability of yield stress-matched cementing suspensions. Soft Matter, 2020, 16, 3929-3940.	2.7	2
146	Ultrafast stiffening of concentrated thermoresponsive mineral suspensions. Materials and Design, 2022, 221, 110905.	7.0	2
147	Reply to the discussion by H. Vaupel and I. Odler of the paper "Microstructural investigations on aerated concreteâ€: Cement and Concrete Research, 2001, 31, 155.	11.0	1
148	Analysis and Design Procedures for Strain Hardening Flexural Beam and Panel. RILEM Bookseries, 2018, , 518-526.	0.4	1
149	Rapid Elemental Extraction from Ordered and Disordered Solutes by Acoustically-Stimulated Dissolution. ACS Engineering Au, 0, , .	5.1	1
150	Evaluating the Use of Accelerated Test Methods for Chloride Transport in Alkali Activated Slag Concretes Using Electrical Impedance and Associated Models. , 2013, , 85-107.		1
151	STRUCTURE AND PROPERTIES OF NaOH ACTIVATED CEMENT FREE BINDER (CFB) CONCRETES. , 2009, , 169-182.		0
152	Multiphysics design optimization model for structural walls incorporating phase-change materials. Engineering Optimization, 2015, 47, 308-327.	2.6	0
153	Effective Constitutive Response of Sustainable Next Generation Infrastructure Materials through High-Fidelity Experiments and Numerical Simulation. Procedia Engineering, 2017, 173, 1258-1265.	1.2	0
154	Advances in characterization and modeling of cementitious materials: transport and volume change in cementitious materials. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9, 52-53.	1.1	0
155	Advances in characterization and modeling of cementitious materials: materials and test methods. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2017, 9, 135-135.	1.1	0
156	Status Report: Section A. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	0
157	Relating print velocity and extrusion characteristics of 3D-printable cementitious binders: Implications towards testing methods. Additive Manufacturing, 2021, 46, 102127.	3.0	0
158	Flow Characterization of Three-Dimensional Printable Cementitious Pastes during Extrusion Using Capillary Rheometry. ACI Materials Journal, 2021, , .	0.2	0
159	Ultra high Performance Concrete - Materials Formulations and Serviceability based Design. , 0, , .		0
160	Effect of Layer Height on Tensile Stress Distribution and Crack Width-and-Propagation in 3D Printed Fiber-Reinforced Flexural Elements. , 2021, , 13-26.		0