Pratap C Naha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915365/publications.pdf

Version: 2024-02-01

44 papers 3,044 citations

147801 31 h-index 39 g-index

44 all docs

44 docs citations

times ranked

44

4702 citing authors

#	Article	IF	CITATIONS
1	Precision targeting of bacterial pathogen via bi-functional nanozyme activated by biofilm microenvironment. Biomaterials, 2021, 268, 120581.	11.4	54
2	In Vivo Molecular K-Edge Imaging of Atherosclerotic Plaque Using Photon-counting CT. Radiology, 2021, 300, 98-107.	7.3	55
3	Dextran-Coated Cerium Oxide Nanoparticles: A Computed Tomography Contrast Agent for Imaging the Gastrointestinal Tract and Inflammatory Bowel Disease. ACS Nano, 2020, 14, 10187-10197.	14.6	89
4	Advances in and Uses of Contrast Agents for Spectral Photon Counting Computed Tomography. , 2020, , 139-162.		0
5	Lipoproteins for Biomedical Applications: Medical Imaging and Drug Delivery. , 2020, , 207-255.		O
6	Effect of Gold Nanoparticle Size on Their Properties as Contrast Agents for Computed Tomography. Scientific Reports, 2019, 9, 14912.	3.3	157
7	Dextran-Coated Iron Oxide Nanoparticles as Biomimetic Catalysts for Localized and pH-Activated Biofilm Disruption. ACS Nano, 2019, 13, 4960-4971.	14.6	243
8	Water-Dispersible Bismuth–Organic Materials with Computed Tomography Contrast Properties. ACS Applied Bio Materials, 2018, 1, 1918-1926.	4.6	10
9	Wulff in a cage gold nanoparticles as contrast agents for computed tomography and photoacoustic imaging. Nanoscale, 2018, 10, 18749-18757.	5.6	34
10	Multicolour imaging with spectral photon-counting CT: a phantom study. European Radiology Experimental, 2018, 2, 34.	3.4	60
11	An all-in-one nanoparticle (AION) contrast agent for breast cancer screening with DEM-CT-MRI-NIRF imaging. Nanoscale, 2018, 10, 17236-17248.	5.6	60
12	Topical ferumoxytol nanoparticles disrupt biofilms and prevent tooth decay in vivo via intrinsic catalytic activity. Nature Communications, 2018, 9, 2920.	12.8	129
13	Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. International Journal of Environmental Research and Public Health, 2018, 15, 338.	2.6	48
14	Nano–Bio Interactions: Nanomedicine and Nanotoxicology. International Journal of Environmental Research and Public Health, 2018, 15, 1222.	2.6	1
15	Nanoparticle Contrast Agents for Medical Imaging. , 2018, , 219-250.		1
16	Nanoparticles for Cardiovascular Imaging with CT., 2017,, 357-384.		0
17	Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution <i>in vivo</i> . Nanoscale, 2017, 9, 18246-18257.	5.6	89
18	Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. Scientific Reports, 2017, 7, 4784.	3.3	115

#	Article	IF	Citations
19	Gold silver alloy nanoparticles (GSAN): an imaging probe for breast cancer screening with dual-energy mammography or computed tomography. Nanoscale, 2016, 8, 13740-13754.	5. 6	84
20	Development of silica-encapsulated silver nanoparticles as contrast agents intended for dual-energy mammography. European Radiology, 2016, 26, 3301-3309.	4.5	34
21	Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Advanced Drug Delivery Reviews, 2016, 106, 116-131.	13.7	115
22	Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Scientific Reports, 2016, 6, 26177.	3.3	41
23	Nanocatalysts promote Streptococcus mutans biofilm matrix degradation and enhance bacterial killing to suppress dental caries inÂvivo. Biomaterials, 2016, 101, 272-284.	11.4	236
24	Labeling monocytes with gold nanoparticles to track their recruitment in atherosclerosis with computed tomography. Biomaterials, 2016, 87, 93-103.	11.4	113
25	Gold Nanoparticles for Biomedical Applications: Synthesis and In Vitro Evaluation. Methods in Pharmacology and Toxicology, 2016, , 87-111.	0.2	11
26	Systematic in vitro toxicological screening of gold nanoparticles designed for nanomedicine applications. Toxicology in Vitro, 2015, 29, 1445-1453.	2.4	62
27	Multimodal imaging: Nanocrystal loaded PLA-shelled contrast agents. , 2015, , .		0
28	Nanoparticle Loaded Polymeric Microbubbles as Contrast Agents for Multimodal Imaging. Langmuir, 2015, 31, 11858-11867.	3.5	37
29	Radiation Dosimetry of the Fibrin-Binding Probe ⁶⁴ Cu-FBP8 and Its Feasibility for PET Imaging of Deep Vein Thrombosis and Pulmonary Embolism in Rats. Journal of Nuclear Medicine, 2015, 56, 1088-1093.	5.0	24
30	Multisite Thrombus Imaging and Fibrin Content Estimation With a Single Whole-Body PET Scan in Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2114-2121.	2.4	42
31	Dextran coated bismuth–iron oxide nanohybrid contrast agents for computed tomography and magnetic resonance imaging. Journal of Materials Chemistry B, 2014, 2, 8239-8248.	5.8	102
32	Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media and Molecular Imaging, 2014, 9, 37-52.	0.8	268
33	Nanodisco Balls: Control over Surface <i>versus</i> Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles. ACS Nano, 2014, 8, 9143-9153.	14.6	40
34	Synthesis, X-ray Opacity, and Biological Compatibility of Ultra-High Payload Elemental Bismuth Nanoparticle X-ray Contrast Agents. Chemistry of Materials, 2014, 26, 2266-2274.	6.7	100
35	Numerical simulations of in vitro nanoparticle toxicity – The case of poly(amido amine) dendrimers. Toxicology in Vitro, 2014, 28, 1449-1460.	2.4	40
36	Generation of intracellular reactive oxygen species and genotoxicity effect to exposure of nanosized polyamidoamine (PAMAM) dendrimers in PLHC-1 cells in vitro. Aquatic Toxicology, 2013, 132-133, 61-72.	4.0	56

#	Article	IF	CITATIONS
37	Role of Polymeric Excipients on Controlled Release Profile of Glipizide from PLGA and Eudragit RS 100 Nanoparticles. Journal of Nanopharmaceutics and Drug Delivery, 2013, 1, 74-81.	0.3	12
38	Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to non-cytotoxic MFI-type zeolite nanoparticles. Toxicology Letters, 2012, 215, 151-160.	0.8	41
39	Reactive oxygen species (ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers in J774A.1 cells. Toxicology and Applied Pharmacology, 2010, 246, 91-99.	2.8	186
40	Intracellular localisation, geno- and cytotoxic response of polyN-isopropylacrylamide (PNIPAM) nanoparticles to human keratinocyte (HaCaT) and colon cells (SW 480). Toxicology Letters, 2010, 198, 134-143.	0.8	80
41	Evaluation of Parenteral Depot Insulin Formulation using PLGA and PLA Microparticles. Journal of Biomaterials Applications, 2009, 24, 309-325.	2.4	16
42	Preparation, characterization of NIPAM and NIPAM/BAM copolymer nanoparticles and their acute toxicity testing using an aquatic test battery. Aquatic Toxicology, 2009, 92, 146-154.	4.0	55
43	An Ecotoxicological Study of <i>Poly(amidoamine)</i> Dendrimers-Toward Quantitative Structure Activity Relationships. Environmental Science & Environm	10.0	60
44	Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. Journal of Microencapsulation, 2008, 25, 248-256.	2.8	44