
Kai SchrĶter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3915321/publications.pdf Version: 2024-02-01

ΚΑΙ SCHDöTED

#	Article	IF	CITATIONS
1	On the role of floodplain storage and hydrodynamic interactions in flood risk estimation. Hydrological Sciences Journal, 2022, 67, 508-534.	2.6	2
2	Capturing Regional Differences in Flood Vulnerability Improves Flood Loss Estimation. Frontiers in Water, 2022, 4, .	2.3	0
3	Brief communication: Key papers of 20Âyears in <i>Natural Hazards and Earth System Sciences</i> . Natural Hazards and Earth System Sciences, 2022, 22, 985-993.	3.6	0
4	Drivers of future fluvial flood risk change for residential buildings in Europe. Global Environmental Change, 2022, 76, 102559.	7.8	9
5	A probabilistic approach to estimating residential losses from different flood types. Natural Hazards, 2021, 105, 2569-2601.	3.4	20
6	Finding Relevant Flood Images on Twitter Using Content-Based Filters. Lecture Notes in Computer Science, 2021, , 5-14.	1.3	3
7	Are OpenStreetMap building data useful for flood vulnerability modelling?. Natural Hazards and Earth System Sciences, 2021, 21, 643-662.	3.6	16
8	Extrapolating Satellite-Based Flood Masks by One-Class Classification—A Test Case in Houston. Remote Sensing, 2021, 13, 2042.	4.0	2
9	Processâ€Based Flood Risk Assessment for Germany. Earth's Future, 2021, 9, e2021EF002259.	6.3	11
10	Large-scale flood risk assessment and management: Prospects of a systems approach. Water Security, 2021, 14, 100109.	2.5	6
11	Bayesian Data-Driven approach enhances synthetic flood loss models. Environmental Modelling and Software, 2020, 132, 104798.	4.5	7
12	The need to integrate flood and drought disaster risk reduction strategies. Water Security, 2020, 11, 100070.	2.5	83
13	Impact Forecasting to Support Emergency Management of Natural Hazards. Reviews of Geophysics, 2020, 58, e2020RG000704.	23.0	93
14	The role of spatial dependence for large-scale flood risk estimation. Natural Hazards and Earth System Sciences, 2020, 20, 967-979.	3.6	25
15	Estimating exposure of residential assets to natural hazards in Europe using open data. Natural Hazards and Earth System Sciences, 2020, 20, 323-343.	3.6	23
16	Exposure and vulnerability estimation for modelling flood losses to commercial assets in Europe. Science of the Total Environment, 2020, 737, 140011.	8.0	22
17	The object-specific flood damage database HOWASÂ21. Natural Hazards and Earth System Sciences, 2020, 20, 2503-2519.	3.6	16
18	Are flood damage models converging to "reality� Lessons learnt from a blind test. Natural Hazards and Earth System Sciences, 2020, 20, 2997-3017.	3.6	38

Kai SchrĶter

#	Article	IF	CITATIONS
19	Hierarchical Bayesian Approach for Modeling Spatiotemporal Variability in Flood Damage Processes. Water Resources Research, 2019, 55, 8223-8237.	4.2	18
20	Probabilistic Models Significantly Reduce Uncertainty in Hurricane Harvey Pluvial Flood Loss Estimates. Earth's Future, 2019, 7, 384-394.	6.3	46
21	Quantifying Flood Vulnerability Reduction via Private Precaution. Earth's Future, 2019, 7, 235-249.	6.3	28
22	A Consistent Approach for Probabilistic Residential Flood Loss Modeling in Europe. Water Resources Research, 2019, 55, 10616-10635.	4.2	26
23	Flood loss estimation using 3D city models and remote sensing data. Environmental Modelling and Software, 2018, 105, 118-131.	4.5	45
24	Evolutionary leap in largeâ€scale flood risk assessment needed. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1266.	6.5	50
25	Regional and Temporal Transferability of Multivariable Flood Damage Models. Water Resources Research, 2018, 54, 3688-3703.	4.2	54
26	Spatial coherence of flood-rich and flood-poor periods across Germany. Journal of Hydrology, 2018, 559, 813-826.	5.4	27
27	Simulation of flood hazard and risk in the Danube basin with the Future Danube Model. Climate Services, 2018, 12, 14-26.	2.5	24
28	How do changes along the risk chain affect flood risk?. Natural Hazards and Earth System Sciences, 2018, 18, 3089-3108.	3.6	25
29	Identifying Driving Factors in Floodâ€Damaging Processes Using Graphical Models. Water Resources Research, 2018, 54, 8864-8889.	4.2	35
30	Multi-model ensembles for assessment of flood losses and associated uncertainty. Natural Hazards and Earth System Sciences, 2018, 18, 1297-1314.	3.6	39
31	Preface: Natural hazard event analysis for risk reduction and adaptation. Natural Hazards and Earth System Sciences, 2018, 18, 963-968.	3.6	6
32	Development and assessment of uni- and multivariable flood loss models for Emilia-Romagna (Italy). Natural Hazards and Earth System Sciences, 2018, 18, 2057-2079.	3.6	76
33	What are the hydro-meteorological controls on flood characteristics?. Journal of Hydrology, 2017, 545, 310-326.	5.4	42
34	Adaptation to flood risk: Results of international paired flood event studies. Earth's Future, 2017, 5, 953-965.	6.3	156
35	Probabilistic, Multivariable Flood Loss Modeling on the Mesoscale with BTâ€FLEMO. Risk Analysis, 2017, 37, 774-787.	2.7	49
36	New insights into flood warning reception and emergency response by affected parties. Natural Hazards and Earth System Sciences, 2017, 17, 2075-2092.	3.6	31

Kai SchrĶter

#	Article	IF	CITATIONS
37	Large-scale flood risk assessment using a coupled model chain. E3S Web of Conferences, 2016, 7, 11005.	0.5	2
38	Coping with Pluvial Floods by Private Households. Water (Switzerland), 2016, 8, 304.	2.7	60
39	Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society, 2016, 21, .	2.3	117
40	The flood of June 2013 in Germany: how much do we know aboutÂitsÂimpacts?. Natural Hazards and Earth System Sciences, 2016, 16, 1519-1540.	3.6	104
41	Tracing the value of data for flood loss modelling. E3S Web of Conferences, 2016, 7, 05005.	0.5	6
42	Large-scale, seasonal flood risk analysis for agricultural crops in Germany. Environmental Earth Sciences, 2016, 75, 1.	2.7	38
43	Continuous, largeâ€scale simulation model for flood risk assessments: proofâ€ofâ€concept. Journal of Flood Risk Management, 2016, 9, 3-21.	3.3	82
44	A Review of Flood Loss Models as Basis for Harmonization and Benchmarking. PLoS ONE, 2016, 11, e0159791.	2.5	118
45	Social media as an information source for rapid flood inundation mapping. Natural Hazards and Earth System Sciences, 2015, 15, 2725-2738.	3.6	167
46	What made the June 2013 flood in Germany an exceptional event? A hydro-meteorological evaluation. Hydrology and Earth System Sciences, 2015, 19, 309-327.	4.9	123
47	Spatially coherent flood risk assessment based on long-term continuous simulation with a coupled model chain. Journal of Hydrology, 2015, 524, 182-193.	5.4	115
48	The extreme flood in June 2013 in Germany. Houille Blanche, 2014, 100, 5-10.	0.3	59
49	A review of multiple natural hazards and risks in Germany. Natural Hazards, 2014, 74, 2279-2304.	3.4	41
50	How useful are complex flood damage models?. Water Resources Research, 2014, 50, 3378-3395.	4.2	124
51	Investigation of superstorm Sandy 2012 in a multi-disciplinary approach. Natural Hazards and Earth System Sciences, 2013, 13, 2579-2598.	3.6	71
52	Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions. Atmospheric Research, 2011, 100, 237-245.	4.1	35
53	Sewer modelling based on highly distributed calibration data sets and multi-objective auto-calibration schemes. Water Science and Technology, 2008, 57, 1547-1554.	2.5	18
54	Up-scaling of multi-variable flood loss models from objects to land use units at the meso-scale. Proceedings of the International Association of Hydrological Sciences, 0, 373, 179-182.	1.0	2