Pingtian Ding

List of Publications by Citations

Source: https://exaly.com/author-pdf/3914907/pingtian-ding-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

37
papers582
citations16
h-index23
g-index43
ext. papers753
ext. citations6.6
avg, IF3.82
L-index

#	Paper	IF	Citations
37	Comparison of exosome-mimicking liposomes with conventional liposomes for intracellular delivery of siRNA. <i>International Journal of Pharmaceutics</i> , 2018 , 550, 100-113	6.5	63
36	Exosome-based small RNA delivery: Progress and prospects. <i>Asian Journal of Pharmaceutical Sciences</i> , 2018 , 13, 1-11	9	47
35	Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers. <i>Acta Biomaterialia</i> , 2019 , 86, 15-40	10.8	36
34	Liquisolid technique and its applications in pharmaceutics. <i>Asian Journal of Pharmaceutical Sciences</i> , 2017 , 12, 115-123	9	33
33	Exploration and Preparation of a Dose-Flexible Regulation System for Levetiracetam Tablets via Novel Semi-Solid Extrusion Three-Dimensional Printing. <i>Journal of Pharmaceutical Sciences</i> , 2019 , 108, 977-986	3.9	28
32	Novel glycyrrhetinic acid conjugated pH-sensitive liposomes for the delivery of doxorubicin and its antitumor activities. <i>RSC Advances</i> , 2016 , 6, 17782-17791	3.7	27
31	Recent advances on extracellular vesicles in therapeutic delivery: Challenges, solutions, and opportunities. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2017 , 119, 381-395	5.7	26
30	Factors influencing the nuclear targeting ability of nuclear localization signals. <i>Journal of Drug Targeting</i> , 2016 , 24, 927-933	5.4	25
29	Thiol Michael addition reaction: a facile tool for introducing peptides into polymer-based gene delivery systems. <i>Polymer International</i> , 2018 , 67, 25-31	3.3	22
28	Effect of novel internal structures on printability and drug release behavior of 3D printed tablets. Journal of Drug Delivery Science and Technology, 2019 , 49, 14-23	4.5	22
27	Functionalized extracellular vesicles as advanced therapeutic nanodelivery systems. <i>European Journal of Pharmaceutical Sciences</i> , 2018 , 121, 34-46	5.1	21
26	Novel guanidinylated bioresponsive poly(amidoamine)s designed for short hairpin RNA delivery. <i>International Journal of Nanomedicine</i> , 2016 , 11, 6651-6666	7.3	21
25	Exploring the role of peptides in polymer-based gene delivery. <i>Acta Biomaterialia</i> , 2017 , 60, 23-37	10.8	19
24	Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. <i>Acta Pharmaceutica Sinica B</i> , 2021 , 11, 2488-2504	15.5	18
23	Cell-free synthesis of connexin 43-integrated exosome-mimetic nanoparticles for siRNA delivery. <i>Acta Biomaterialia</i> , 2019 , 96, 517-536	10.8	17
22	Dissolution enhancement of tadalafil by liquisolid technique. <i>Pharmaceutical Development and Technology</i> , 2017 , 22, 77-89	3.4	16
21	Microdialysis sampling coupled to HPLC for transdermal delivery study of ondansetron hydrochloride in rats. <i>Biomedical Chromatography</i> , 2000 , 14, 141-3	1.7	15

(2020-2019)

Exploring the functions of polymers in adenovirus-mediated gene delivery: Evading immune response and redirecting tropism. <i>Acta Biomaterialia</i> , 2019 , 97, 93-104	10.8	14
Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. <i>Acta Biomaterialia</i> , 2018 , 76, 1-20	10.8	13
Comparative pharmacokinetics of tetramethylpyrazine phosphate in rat plasma and extracellular fluid of brain after intranasal, intragastric and intravenous administration. <i>Acta Pharmaceutica Sinica B</i> , 2014 , 4, 74-8	15.5	13
A method for the preparation of sustained release-coated Metoprolol Succinate pellet-containing tablets. <i>Pharmaceutical Development and Technology</i> , 2016 , 21, 943-950	3.4	11
Effects of pH-Sensitive Groups on Poly(ethylene oxide)-block-poly(?-caprolactone) Block Copolymer Micelles Used as Drug Carriers. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2511-2521	2.6	11
Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600297	5.5	9
Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. <i>International Journal of Nanomedicine</i> , 2016 , 11, 4011-24	7.3	9
Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 175, 10-17	6	9
Molecular weight determination of a newly synthesized guanidinylated disulfide-containing poly(amido amine) by gel permeation chromatography. <i>Asian Journal of Pharmaceutical Sciences</i> , 2017 , 12, 292-298	9	8
A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 182, 110355	6	7
Disulfide-bond-containing agamatine-cystaminebisacrylamide polymer demonstrates better transfection efficiency and lower cytotoxicity than polyethylenimine in NIH/3T3 cells. <i>Journal of Cellular Biochemistry</i> , 2018 , 119, 1767-1779	4.7	7
Bioreducible poly(amido amine) copolymers derived from histamine and agmatine for highly efficient gene delivery. <i>Polymer International</i> , 2019 , 68, 447-455	3.3	5
Nuclear delivery of plasmid DNA determines the efficiency of gene expression. <i>Cell Biology International</i> , 2019 , 43, 789-798	4.5	3
Nuclear localization signal peptide enhances transfection efficiency and decreases cytotoxicity of poly(agmatine/N,N'-cystamine-bis-acrylamide)/pDNA complexes. <i>Journal of Cellular Biochemistry</i> , 2019 , 120, 16967-16977	4.7	2
Intracellular distribution and internalization pathways of guanidinylated bioresponsive poly(amido amine)s in gene delivery. <i>Asian Journal of Pharmaceutical Sciences</i> , 2018 , 13, 360-372	9	2
Uptake Pathways of Guandinylated Disulfide Containing Polymers as Nonviral Gene Carrier Delivering DNA to Cells. <i>Journal of Cellular Biochemistry</i> , 2017 , 118, 903-913	4.7	2
Preparation and some physicochemical properties of cross-linked poloxamer hydrogel spheres. Drug Development and Industrial Pharmacy, 2001 , 27, 171-4	3.6	1
A dual-functional buformin-mimicking poly(amido amine) for efficient and safe gene delivery. Journal of Drug Targeting, 2020 , 28, 923-932	5.4	О
	Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. <i>Acta Biomaterialia</i> , 2018 , 76, 1-20 Comparative pharmacokinetics of tetramethylpyrazine phosphate in rat plasma and extracellular fluid of brain after intranasal, intragastric and intravenous administration. <i>Acta Pharmaceutica Sinica B</i> , 2014 , 4, 74-8 A method for the preparation of sustained release-coated Metoprolol Succinate pellet-containing tablets. <i>Pharmaceutical Development and Technology</i> , 2016 , 21, 943-950 Effects of pH-Sensitive Groups on Poly(ethylene oxide)-block-poly(2-caprolactone) Block Copolymer Micelles Used as Drug Carriers. <i>Macromolecular Chemistry and Physics</i> , 2011 , 212, 2511-2521 Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600297 Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. <i>International Journal of Nanomedicine</i> , 2016 , 11, 4011-24 Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 175, 10-17 Molecular weight determination of a newly synthesized guanidinylated disulfide-containing poly(amido amine) by gel permeation chromatography. <i>Asian Journal of Pharmaceutical Sciences</i> , 2017 , 12, 292-298 A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 182, 110355 Disulfide-bond-containing agamine-cystamine-cystamine polyethylenimine in NIH/3T3 cells. <i>Journal of Cellular Biochemistry</i> , 2018 , 119, 1767-1779 Bioreducible poly(amido amine) copolymers derived from histamine and agmatine for highly efficient gene delivery. <i>Polymer International</i> , 2019 , 68, 447-455 Nuclear localization signal peptide enhances transfection efficiency and decreases cytotoxicity of poly(agmatine/NN*-cystamine-bis-acry	Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomaterialia, 2018, 76, 1-20 Comparative pharmacokinetics of tetramethylpyrazine phosphate in rat plasma and extracellular fluid of brain after intranasal, intragastric and intravenous administration. Acta Pharmaceutica Sinica B, 2014, 4, 74-8 A method for the preparation of sustained release-coated Metoprolol Succinate pellet-containing tablets. Pharmaceutical Development and Technology, 2016, 21, 943-950 Effects of pH-Sensitive Groups on Poly(ethylene oxide)-block-poly(3-caprolactone) Block Copolymer Micelles Used as Drug Carriers. Macromolecular Chemistry and Physics, 2011, 212, 2511-2521 Structure-Function Correlations of Poly(Amido Amine)s for Gene Delivery. Macromolecular Bioscience, 2017, 17, 1600297 Guanidinylated bioresponsive poly(amido amine)s designed for intranuclear gene delivery. International Journal of Nanomedicine, 2016, 11, 4011-24 Amphoteric poly(amido amine)s with adjustable balance between transfection efficiency and cytotoxicity for gene delivery. Colloids and Surfaces B: Biointerfaces, 2019, 175, 10-17 Molecular weight determination of a newly synthesized guanidinylated disulfide-containing poly(amido amine) by gel permeation chromatography. Asian Journal of Pharmaceutical Sciences, 2017, 12, 292-298 A biodegradable poly(amido amine) based on the antimicrobial polymer polyhexamethylene biguanide for efficient and safe gene delivery. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110355 Disulfide-bond-containing agamatine-cystaminebisacrylamide polymer polyhexamethylene fricient gene delivery. Polymer International, 2019, 68, 447-455 Nuclear delivery of plasmid DNA determines the efficiency of gene expression. Cell Biology International, 2019, 43, 789-798 Nuclear delivery of plasmid DNA determines the efficiency of gene expression. Cell Biology International, 2019, 43, 789-798 Nuclear delivery. Polymer International, 2019, 68, 447-455 Nuclear delivery of

Amphiphilic cationic triblock polymers for p53-mediated triple-negative breast cancer gene therapy. *Materials and Design*, **2022**, 110758

8.1 0

BFH/AGM-CBA/HSV-TK/LIPOSOME-AffibodyllNovel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. *Drug Design, Development and Therapy*,Volume 16, 1515-1530

4.4