Noriko Yoshimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914502/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PEGylated protein separations: Challenges and opportunities. Biotechnology Journal, 2012, 7, 592-593.	1.8	19
2	PEG chain length impacts yield of solidâ€phase protein PEGylation and efficiency of PEGylated protein separation by ionâ€exchange chromatography: Insights of mechanistic models. Biotechnology Journal, 2013, 8, 801-810.	1.8	19
3	Retention Mechanism of Proteins in Hydroxyapatite Chromatography – Multimodal Interaction Based Protein Separations: A Model Study. Current Protein and Peptide Science, 2018, 20, 75-81.	0.7	19
4	Drying of Yeasts—Factors Affecting Inactivation During Drying. Drying Technology, 2011, 29, 1981-1985.	1.7	18
5	Salt tolerant chromatography provides salt tolerance and a better selectivity for protein monomer separations. Biotechnology Journal, 2015, 10, 1929-1934.	1.8	18
6	Thermodynamic analysis of polyphenols retention in polymer resin chromatography by van't Hoff plot and isothermal titration calorimetry. Journal of Chromatography A, 2019, 1608, 460405.	1.8	17
7	Choosing the right protein A affinity chromatography media can remove aggregates efficiently. Biotechnology Journal, 2017, 12, 1600427.	1.8	14
8	A simple method for calculating the productivity of polyphenol separations by polymer-based chromatography. Bioscience, Biotechnology and Biochemistry, 2017, 81, 812-816.	0.6	13
9	Peak spreading in linear gradient elution chromatography with a thin monolithic disk. Journal of Chromatography A, 2011, 1218, 2460-2466.	1.8	12
10	Effect of pore size on performance of monolithic tube chromatography of large biomolecules. Electrophoresis, 2017, 38, 2892-2899.	1.3	10
11	Monolith disk chromatography separates PEGylated protein positional isoforms within minutes at low pressure. Biotechnology Journal, 2016, 11, 100-106.	1.8	9
12	Linear flowâ€velocity gradient chromatography—An efficient method for increasing the process efficiency of batch and continuous capture chromatography of proteins. Biotechnology and Bioengineering, 2021, 118, 1262-1272.	1.7	9
13	Microcalorimetric Analysis of the Adsorption of Lysozyme and Cytochrome c onto Cation-Exchange Chromatography Resins: Influence of Temperature on Retention. Langmuir, 2020, 36, 3336-3345.	1.6	8
14	A regressive approach to the design of continuous capture process with multi-column chromatography for monoclonal antibodies. Journal of Chromatography A, 2021, 1658, 462604.	1.8	8
15	A Simple Method for Predicting the Adsorption Performance of Capture Chromatography of Proteins. Japan Journal of Food Engineering, 2016, 17, 95-98.	0.1	7
16	Prediction of the Performance of Capture Chromatography Processes of Proteins and Its Application to the Repeated Cyclic Operation Optimization. Journal of Chemical Engineering of Japan, 2020, 53, 689-697.	0.3	7
17	Accelerated Method for Designing Flow-Through Chromatography of Proteins. Journal of Chemical Engineering of Japan, 2020, 53, 206-213.	0.3	7
18	Optimization of Flow-Through Chromatography of Proteins. Journal of Chemical Engineering of Japan, 2020, 53, 214-221.	0.3	6

Noriko Yoshimoto

#	Article	IF	CITATIONS
19	Enzyme Retention During Drying of Amorphous Sugar and Carbohydrate Solutions: Diffusion Model Revisited. Drying Technology, 2013, 31, 1525-1531.	1.7	4
20	Effects of Pre-Treatments on Browning of Lemon Peels during Drying. Japan Journal of Food Engineering, 2014, 15, 181-187.	0.1	4
21	Micro-Plate Based Monolithic Ion-Exchange Chromatography for High Throughput Protein Purification Process Design. Journal of Chemical Engineering of Japan, 2008, 41, 200-205.	0.3	4
22	Correlation between protein desorption behavior and its adsorption enthalpy change in polymer grafted anion exchange chromatography. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111853.	2.5	3
23	Reactionâ€Mediated Desorption of Macromolecules: Novel Phenomenon Enabling Simultaneous Reaction and Separation. Biotechnology Journal, 2018, 13, e1700738.	1.8	2
24	Retention and diffusion characteristics of oligonucleotides in a solid phase with polymer grafted anion-exchanger. Journal of Chromatography A, 2020, 1629, 461495.	1.8	2
25	A Simplified Method for Predicting the Effect of Temperature on the Separation Performance by Chromatography. Japan Journal of Food Engineering, 2021, 22, 53-57.	0.1	2
26	Measurement of High Protein Concentrations by Optical Rotation: A Case Study for Monitoring of Monoclonal Antibody Drug Downstream Processes. Current Protein and Peptide Science, 2021, 22, 898-904.	0.7	1
27	Statistical Evaluation of Cleaning Processes in Food Manufacturing Facilities. Japan Journal of Food Engineering, 2021, 22, 47-51.	0.1	0
28	Continuous Protein Modification and Separation Process with Chromatography. Japan Journal of Food Engineering, 2022, 23, 1-12.	0.1	0