
Roopesh Singh Gangwar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914298/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mouse Models of Psoriasis: A Comprehensive Review. Journal of Investigative Dermatology, 2022, 142, 884-897.	0.3	33
2	Update on Eosinophil Interaction with Mast Cells: The Allergic Effector Unit. Methods in Molecular Biology, 2021, 2241, 221-242.	0.4	6
3	New Frontiers in Psoriatic Disease Research, Part I: Genetics, Environmental Triggers, Immunology, Pathophysiology, and Precision Medicine. Journal of Investigative Dermatology, 2021, 141, 2112-2122.e3.	0.3	19
4	Differential contribution of bone marrow-derived infiltrating monocytes and resident macrophages to persistent lung inflammation in chronic air pollution exposure. Scientific Reports, 2020, 10, 14348.	1.6	16
5	Exposure to Air Pollution Disrupts Circadian Rhythm through Alterations in Chromatin Dynamics. IScience, 2020, 23, 101728.	1.9	27
6	Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biology, 2020, 34, 101545.	3.9	156
7	Metabolic effects of air pollution exposure and reversibility. Journal of Clinical Investigation, 2020, 130, 6034-6040.	3.9	43
8	Microbe-host interplay in atopic dermatitis and psoriasis. Nature Communications, 2019, 10, 4703.	5.8	217
9	<scp>CD</scp> 300a expression is modulated in atopic dermatitis and could influence the inflammatory response. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1377-1380.	2.7	12
10	Leukocyte CD300a Contributes To The Resolution Of Murine Allergic Inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, AB186.	1.5	0
11	Alpha2B-Adrenergic Receptor Overexpression in the Brain Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. Toxicological Sciences, 2019, 169, 95-107.	1.4	20
12	Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. American Journal of Hypertension, 2018, 31, 150-165.	1.0	72
13	Evaluation of Soluble CD48 Levels in Patients with Allergic and Nonallergic Asthma in Relation to Markers of Type 2 and Non-Type 2 Immunity: An Observational Study. Journal of Immunology Research, 2018, 2018, 1-7.	0.9	6
14	Leukocyte CD300a Contributes to the Resolution of Murine Allergic Inflammation. Journal of Immunology, 2018, 201, 2998-3005.	0.4	20
15	CD300a: A New Player in Atopic Dermatitis?. Journal of Allergy and Clinical Immunology, 2017, 139, AB238.	1.5	0
16	WAO International Scientific Conference (WISC 2016) Abstracts. World Allergy Organization Journal, 2017, 10, 25.	1.6	4
17	Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. , 2017, 170, 37-63.		38
18	<scp>CD</scp> 48 on blood leukocytes and in serum of asthma patients varies with severity. Allergy: European Journal of Allergy and Clinical Immunology, 2017, 72, 888-895.	2.7	22

#	Article	IF	CITATIONS
19	sCD48 is anti-inflammatory in <i>Staphylococcus aureus</i> Enterotoxin B-induced eosinophilic inflammation. Allergy: European Journal of Allergy and Clinical Immunology, 2016, 71, 829-839.	2.7	18
20	sCD48 Is a Novel Eosinophil Derived Decoy Receptor That Decreases Seb Activity in Vitro and In Vivo. Journal of Allergy and Clinical Immunology, 2016, 137, AB167.	1.5	1
21	Mast cells and eosinophils in allergy: Close friends or just neighbors. European Journal of Pharmacology, 2016, 778, 77-83.	1.7	22
22	Author response to â€~ <i>Staphylococcus aureus</i> and primary lysis of eosinophils' by Dr Persson. Clinical and Experimental Allergy, 2015, 45, 490-491.	1.4	0
23	Mast Cells' Integrated Actions with Eosinophils and Fibroblasts in Allergic Inflammation. Advances in Immunology, 2015, 125, 41-85.	1.1	33
24	The CD48 receptor mediates <i>Staphylococcus aureus</i> human and murine eosinophil activation. Clinical and Experimental Allergy, 2014, 44, 1335-1346.	1.4	29
25	Complex 2B4 Regulation of Mast Cells and Eosinophils in Murine Allergic Inflammation. Journal of Investigative Dermatology, 2014, 134, 2928-2937.	0.3	22
26	Eosinophils Interaction with Mast Cells: The Allergic Effector Unit. Methods in Molecular Biology, 2014, 1178, 231-249.	0.4	10
27	Induction of virus-specific neutralizing immune response against West Nile and Japanese encephalitis viruses by chimeric peptides representing T-helper and B-cell epitopes. Virus Research, 2012, 163, 40-50.	1.1	10
28	Delineation of an epitope on domain I of Japanese Encephalitis Virus envelope glycoprotein using monoclonal antibodies. Virus Research, 2011, 158, 179-187.	1.1	11
29	Chapter 4 Histamine Receptors and Inflammatory Cells. , 0, , .		0