Konstantin Zhuravlev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914258/publications.pdf Version: 2024-02-01

		430754	501076
230	1,324	18	28
papers	citations	h-index	g-index
001	0.01	0.01	1100
231	231	231	1128
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Self-trapped exciton recombination in silicon nanocrystals. Physical Review B, 2001, 63, .	1.1	91
2	Mechanism of photoluminescence of Si nanocrystals fabricated in a SiO2 matrix. Applied Physics Letters, 1998, 73, 2962-2964.	1.5	55
3	Atomic and energy structure of InAs/AlAs quantum dots. Physical Review B, 2008, 78, .	1.1	52
4	Exciton recombination dynamics in an ensemble of (In,Al)As/AlAs quantum dots with indirect band-gap and type-I band alignment. Physical Review B, 2011, 84, .	1.1	42
5	Interplay of exciton and electron-hole plasma recombination on the photoluminescence dynamics in bulk GaAs. Physical Review B, 2006, 73, .	1.1	40
6	Effect of surface acoustic waves on low-temperature photoluminescence of GaAs. Applied Physics Letters, 1997, 70, 3389-3391.	1.5	39
7	The origin of 2.7 eV blue luminescence band in zirconium oxide. Journal of Applied Physics, 2014, 116, .	1.1	39
8	Photoluminescence of high-quality AlGaAs layers grown by molecular-beam epitaxy. Applied Physics Letters, 2000, 76, 1131-1133.	1.5	27
9	Millisecond photoluminescence kinetics in a system of direct-bandgap InAs quantum dots in an AlAs matrix. JETP Letters, 2003, 77, 389-392.	0.4	26
10	Carrier dynamics in InAs/AlAs quantum dots: lack in carrier transfer from wetting layer to quantum dots. Nanotechnology, 2010, 21, 155703.	1.3	25
11	Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas. Semiconductors, 2013, 47, 33-44.	0.2	24
12	Prospects for the development of high-power field-effect transistors based on heterostructures with donor-acceptor doping. Semiconductors, 2014, 48, 666-674.	0.2	24
13	Liquid phase epitaxial growth of undoped gallium arsenide from bismuth and gallium melts. Crystal Research and Technology, 1989, 24, 235-246.	0.6	21
14	Photoluminescence from cadmium sulfide nanoclusters formed in the matrix of a Langmuir-Blodgett film. Semiconductors, 2003, 37, 1321-1325.	0.2	20
15	Photoluminescence dynamics in GaAs along an optically induced Mott transition. Journal of Applied Physics, 2007, 101, 081717.	1.1	20
16	Characterization of MBEâ€grown AlGaN layers heavily doped using silane. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 315-318.	0.8	20
17	Strong sensitivity of photoluminescence of InAs/AlAs quantum dots to defects: evidence for lateral inter-dot transport. Semiconductor Science and Technology, 2006, 21, 527-531.	1.0	18
18	Spin relaxation of negatively charged excitons in (In,Al)As/AlAs quantum dots with indirect band gap and type-I band alignment. Applied Physics Letters, 2012, 101, 142108.	1.5	18

KONSTANTIN ZHURAVLEV

#	Article	IF	CITATIONS
19	The influence of irradiation and subsequent annealing on Si nanocrystals formed in SiO2 layers. Semiconductors, 2000, 34, 965-970.	0.2	17
20	Changes in optical properties of CdS nanoclusters in langmuir-blodgett films on passivation in ammonia. Semiconductors, 2008, 42, 702-709.	0.2	17
21	Excitonic polaritons in semiconductor solid solutions AlxGa1-xAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 900-905.	0.8	16
22	Recombination of self-trapped excitons in silicon nanocrystals grown in silicon oxide. Semiconductors, 2000, 34, 1203-1206.	0.2	15
23	Synthesis of silicon oxide nanowires by the GJ EBP CVD method using different diluent gases. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1774-1782.	0.8	15
24	Luminescence and superradiance in electron-beam-excited AlxGa1â^'xN. Journal of Applied Physics, 2014, 116, 113103.	1.1	14
25	2D AlN crystal phase formation on (0001) Al2 O3 surface by ammonia MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 443-446.	0.8	14
26	Manganese-related recombination centers in epitaxial GaAs grown from a bismuth melt. Semiconductors, 1998, 32, 43-48.	0.2	13
27	Effect of ion dose and annealing mode on photoluminescence from SiO2 implanted with Si ions. Semiconductors, 1998, 32, 1222-1228.	0.2	13
28	Millisecond phosphorescence of free electrons in pure GaAs. Applied Physics Letters, 2001, 79, 3455-3457.	1.5	13
29	Temperature dependence of photoluminescence of CdS nanoclusters formed in the Langmuir-Blodgett film matrix. Semiconductors, 2006, 40, 1188-1192.	0.2	13
30	Decreasing the role of transverse spatial electron transport and increasing the output power of heterostructure field-effect transistors. Technical Physics Letters, 2012, 38, 819-821.	0.2	13
31	Ge/Si waveguide photodiodes with built-in layers of Ge quantum dots for fiber-optic communication lines. Semiconductors, 2004, 38, 1225-1229.	0.2	12
32	Investigation of growth mechanisms of GaN quantum dots on (0001)AlN surface by ammonia MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 1548-1551.	0.8	12
33	Pauli blockade of the electron spin flip in bulk GaAs. Physical Review B, 2007, 75, .	1.1	12
34	Influence of the additional p ⁺ doped layers on the properties of AlGaAs/InGaAs/AlGaAs heterostructures for high power SHF transistors. Journal Physics D: Applied Physics, 2016, 49, 095108.	1.3	12
35	Fluorinated Surface of Carbon Nanotube Buckypaper for Uniform Growth of CdS Nanoparticles. Journal of Physical Chemistry C, 2017, 121, 19182-19190.	1.5	11
36	Room temperature 1.5 <i>μ</i> m light-emitting silicon diode with embedded <i>β</i> -FeSi2 nanocrystallites. Applied Physics Letters, 2012, 101, .	1.5	10

#	Article	IF	CITATIONS
37	Influence of substrate temperature on the morphology of silicon oxide nanowires synthesized using a tin catalyst. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 1790-1795.	0.8	10
38	Infrared light emission from GaAs MESFETs operating at avalanche breakdown conditions. Semiconductor Science and Technology, 2004, 19, S94-S95.	1.0	9
39	Growth of AlGaN/GaN heterostructures with a two-dimensional electron gas on AlN/Al2O3 substrates. Optoelectronics, Instrumentation and Data Processing, 2013, 49, 429-433.	0.2	9
40	Photoresistance of Si/Ge/Si structures with germanium quantum dots. Semiconductors, 2000, 34, 1311-1315.	0.2	8
41	Deep levels and electron transport in AlGaN/GaN heterostructures. Semiconductors, 2008, 42, 52-58.	0.2	8
42	Decrease in the binding energy of donors in heavily doped GaN:Si layers. Semiconductors, 2014, 48, 1134-1138.	0.2	8
43	Origin of the blue luminescence band in zirconium oxide. Physics of the Solid State, 2015, 57, 1347-1351.	0.2	8
44	MBE-grown InSb photodetector arrays. Technical Physics, 2017, 62, 915-919.	0.2	8
45	Effect of the Sapphire-Nitridation Level and Nucleation-Layer Enrichment with Aluminum on the Structural Properties of AlN Layers. Semiconductors, 2018, 52, 789-796.	0.2	8
46	High-Power High-Speed Schottky Photodiodes for Analog Fiber-Optic Microwave Signal Transmission Lines. Technical Physics Letters, 2019, 45, 739-741.	0.2	8
47	Electro- and Photoluminescence of CdS Nanoparticles Deposited on Carbon Nanotubes. Journal of Nanoelectronics and Optoelectronics, 2013, 8, 36-41.	0.1	8
48	Quantum-Sized Silicon Precipitates in Silicon-Implanted and Pulse-Annealed Silicon Dioxide Films: Photoluminescence and Structural Transformations. Materials Research Society Symposia Proceedings, 1996, 438, 453.	0.1	7
49	Properties of manganese-doped gallium arsenide layers grown by liquid-phase epitaxy from a bismuth melt. Semiconductors, 1998, 32, 704-710.	0.2	7
50	Photoluminescence kinetics in GaAs under the influence of surface acoustic waves. Semiconductors, 2001, 35, 895-899.	0.2	7
51	The role of nitrogen in the formation of luminescent silicon nanoprecipitates during heat treatment of SiO2 layers implanted with Si+ ions. Semiconductors, 2001, 35, 1182-1186.	0.2	7
52	Formation of nanocrystalline silicon films using high-dose H+ ion implantation into silicon-on-insulator layers with subsequent rapid thermal annealing. Semiconductors, 2004, 38, 107-112.	0.2	7
53	Wavelength-selective enhancement of the intensity of visible photoluminescence in hydrogen-ion-implanted silicon-on-insulator structures annealed under high pressure. Applied Physics Letters, 2006, 89, 013106.	1.5	7
54	Optical properties of photodetectors based on wurtzite quantum dot arrays. Physical Review B, 2008, 77, .	1.1	7

#	Article	IF	CITATIONS
55	Electrical properties and deep traps spectra of N-polar and Ga-polar AlGaN films grown by molecular beam epitaxy in a wide composition range. Journal of Applied Physics, 2009, 105, 113712.	1.1	7
56	Observation of the zero-magnetic-field exciton spin splitting in high quality bulk GaAs and AlGaAs. Applied Physics Letters, 2009, 95, 182107.	1.5	7
57	Chemical kinetics and thermodynamics of the AlN crystalline phase formation on sapphire substrate in ammonia MBE. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1099-1107.	2.0	7
58	Luminescence line shapes of band to deep centre and donor–acceptor transitions in AlN. Journal of Physics Condensed Matter, 2020, 32, 435501.	0.7	7
59	Characterization of shallow acceptors in GaAs by microsecondâ€scale timeâ€resolved photoluminescence. Applied Physics Letters, 1996, 68, 373-375.	1.5	6
60	Optical properties of germanium monolayers on silicon. Semiconductors, 2001, 35, 941-946.	0.2	6
61	Photoluminescence of Germanium Quantum Dots Grown in Silicon on a SiO[sub 2] Submonolayer. Physics of the Solid State, 2005, 47, 82.	0.2	6
62	Quantum confinement and electron spin resonance characteristics in Si-implanted silicon oxide films. Journal of Applied Physics, 2011, 109, 084502.	1.1	6
63	Influence of shape of GaN/AIN quantum dots on luminescence decay law. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 653-656.	0.8	6
64	Electronic excitation energy transfer between CdS quantum dots and carbon nanotubes. JETP Letters, 2012, 95, 362-365.	0.4	6
65	Thermodynamic and kinetic aspects of AlN crystal formation on (0001)Al2O3surface by ammonia MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 613-616.	0.8	6
66	Increase in the diffusion length of minority carriers in Al x Ga1–x N alloys (x = 0–0.1) fabricated by ammonia molecular beam epitaxy. Semiconductors, 2015, 49, 1285-1289.	0.2	6
67	Photoluminescence kinetics in CdS nanoclusters formed by the Langmuir-Blodgett technique. Semiconductors, 2015, 49, 380-386.	0.2	6
68	Indiumâ€Assisted Plasmaâ€Enhanced Lowâ€Temperature Growth of Silicon Oxide Nanowires. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700749.	0.8	6
69	Increasing Saturated Electron-Drift Velocity in Donor–Acceptor Doped pHEMT Heterostructures. Technical Physics Letters, 2018, 44, 260-262.	0.2	6
70	About the nature of the barrier inhomogeneities at Au/Ti/n-InAlAs(001) Schottky contacts. Applied Physics Letters, 2019, 114, .	1.5	6
71	Crystal Structure and Predominant Defects in CdS Quantum Dots Fabricated by the Langmuir–Blodgett Method. Langmuir, 2021, 37, 5651-5658.	1.6	6
72	Evolution of the atomic and electronic structures during nitridation of the Si(1 1 1) surface under ammonia flux. Applied Surface Science, 2022, 571, 151276.	3.1	6

#	Article	IF	CITATIONS
73	Influence of trapping on the exciton dynamics of AlxGa1â^'xAs films. Applied Physics Letters, 2005, 86, 111906.	1.5	5
74	Investigation of Multilayer Silicon Structures with Buried Iron Silicide Nanocrystallites: Growth, Structure, and Properties. Journal of Nanoscience and Nanotechnology, 2008, 8, 527-534.	0.9	5
75	Photoluminescence of GaN/AlN quantum dots at high excitation powers. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2230-2232.	0.8	5
76	Studying average electron drift velocity in pHEMT structures. Technical Physics Letters, 2016, 42, 848-851.	0.2	5
77	AlN/GaN heterostructures for normally-off transistors. Semiconductors, 2017, 51, 379-386.	0.2	5
78	Defect-related luminescence in InAlAs on InP grown by molecular beam epitaxy. Semiconductor Science and Technology, 2017, 32, 095009.	1.0	5
79	Negative Differential Resistance Observation and a New Fitting Model for Electron Drift Velocity in GaN-Based Heterostructures. IEEE Transactions on Electron Devices, 2018, 65, 950-956.	1.6	5
80	Undoped High-Resistance GaN Buffer Layer for AlGaN/GaN High-Electron-Mobility Transistors. Technical Physics Letters, 2019, 45, 761-764.	0.2	5
81	Millimeter-Wave Donor–Acceptor-Doped DpHEMT. IEEE Transactions on Electron Devices, 2021, 68, 53-56.	1.6	5
82	The effect of barrier layers on 2D electron effective mass in Al _{0.3} Ga _{0.7} N/AlN/GaN heterostructures. Journal of Physics Condensed Matter, 2021, 33, 255501.	0.7	5
83	Morphological, structural and luminescence properties of Si/β-FeSi2/Si heterostructures fabricated by Fe ion implantation and Si MBE. Journal Physics D: Applied Physics, 2007, 40, 5319-5326.	1.3	4
84	Application of XAFS spectroscopy to studying the microstructure and electronic structure of quantum dots. Journal of Surface Investigation, 2007, 1, 26-34.	0.1	4
85	Nonradiative recombination in GaN quantum dots formed in the AlN matrix. Semiconductors, 2009, 43, 768-774.	0.2	4
86	Quantization of the electronic spectrum and localization of electrons and holes in silicon quantum dots. Physics of the Solid State, 2011, 53, 860-863.	0.2	4
87	Self-assembled Quantum Dots: From Stranski–Krastanov to Droplet Epitaxy. , 2012, , 127-200.		4
88	Defects and stresses in MBE-grown GaN and Al0.3Ga0.7N layers doped by silicon using silane. Crystallography Reports, 2013, 58, 1023-1029.	0.1	4
89	INFRARED PHOTOLUMINESCENCE SPECTRA OF PBS NANOPARTICLES PREPARED BY LANGMUIR–BLODGETT AND LASER ABLATION METHODS. Acta Polytechnica, 2014, 54, 426-429.	0.3	4
90	Formation of a Graphene-Like SiN Layer on the Surface Si(111). Semiconductors, 2018, 52, 1511-1517.	0.2	4

#	Article	IF	CITATIONS
91	Growth of Nitride Heteroepitaxial Transistor Structures: from Epitaxy of Buffer Layers to Surface Passivation. Optoelectronics, Instrumentation and Data Processing, 2020, 56, 485-491.	0.2	4
92	Modification of the surface energy and morphology of GaN monolayers on the AlN surface in an ammonia flow. Applied Physics Letters, 2022, 120, .	1.5	4
93	Mobile line in the acceptor photoluminescence spectrum of "pure―GaAs. JETP Letters, 1997, 65, 86-90.	0.4	3
94	Changes in the density of nonradiative recombination centers in GaAs/AlGaAs quantum-well structures as a result of treatment in CF4 plasma. Semiconductors, 2002, 36, 81-84.	0.2	3
95	Porous-like silicon prepared from Si:H annealed at high argon pressure. Physica Status Solidi A, 2003, 197, 236-240.	1.7	3
96	Continuous order-disorder phase transition (2×2)→(1×1) on the (0001)AlN surface. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2498-2501.	0.8	3
97	Reversal of spin polarization direction in excitonic photoluminescence of AlGaAs. Europhysics Letters, 2009, 88, 17001.	0.7	3
98	Microstructure of quantum dots ensembles by EXAFS spectroscopy. Journal of Physics: Conference Series, 2009, 190, 012131.	0.3	3
99	Photoluminescence of CdS nanoparticles grown on carbon nanotubes covered by a dielectric polymer layer. Physica Status Solidi (B): Basic Research, 2013, 250, 2759-2764.	0.7	3
100	Diffusion and deformations in heterosystems with GaN/AlN superlattices, according to data from EXAFS spectroscopy. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1147-1150.	0.1	3
101	Tunneling transport through passivated CdS nanocrystal arrays grown by the Langmuir-Blodgett method. Semiconductors, 2014, 48, 1205-1210.	0.2	3
102	Identification of photoluminescence bands in AlGaAs/InGaAs/GaAs PHEMT heterostructures with donor-acceptor-doped barriers. Semiconductors, 2015, 49, 224-228.	0.2	3
103	MBE-grown AlGaN/GaN heterostructures for UV photodetectors. Technical Physics, 2015, 60, 546-552.	0.2	3
104	Normally off transistors based on in situ passivated AlN/GaN heterostructures. Technical Physics Letters, 2016, 42, 750-753.	0.2	3
105	Peculiarities of CdS nanocrystal formation at annealing of a Langmuir-Blodgett matrix. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 417-420.	0.8	3
106	Photoelectric characteristics of focal plane arrays based on epitaxial layers of indium antimonide deposited on a heavily doped substrate. Journal of Communications Technology and Electronics, 2017, 62, 309-313.	0.2	3
107	Electronic excitation transfer from an organic matrix to CdS nanocrystals produced by the Langmuir–Blodgett method. Semiconductors, 2017, 51, 576-581.	0.2	3
108	Nature of intensive defect-related broadband luminescence of heavily doped AlxGa1-xN:Si layers. Journal of Physics: Conference Series, 2017, 816, 012002.	0.3	3

#	Article	IF	CITATIONS
109	An X-ray spectroscopy study of CdS nanoparticles formed by the Langmuir–Blodgett technique on the surface of carbon nanotube arrays. Journal of Structural Chemistry, 2017, 58, 876-884.	0.3	3
110	Mobility of the Two-Dimensional Electron Gas in DA-pHEMT Heterostructures with Various Î′–n-Layer Profile Widths. Semiconductors, 2018, 52, 44-52.	0.2	3
111	Electronâ€6timulated Aluminum Nitride Crystalline Phase Formation on the Sapphire Surface. Physica Status Solidi (B): Basic Research, 2019, 256, 1800516.	0.7	3
112	Substitution of Phosphorus at the InP(001) Surface Upon Annealing in an Arsenic Flux. Semiconductors, 2021, 55, 823-827.	0.2	3
113	Donor-acceptor recombination in type-II GaAs/AlAs superlattices. Physics of the Solid State, 1998, 40, 1577-1581.	0.2	2
114	New impurity-induced defect in heavily zinc-doped GaAs grown by liquid phase epitaxy. Semiconductor Science and Technology, 1998, 13, 1123-1129.	1.0	2
115	Use of high-purity AlxGa1â^'x as layers in epitaxial structures for high-power microwave field-effect transistors. Technical Physics Letters, 1999, 25, 595-597.	0.2	2
116	Study of photoluminescence of SiOxNy films implanted with Ge+ ions and annealed under the conditions of hydrostatic pressure. Semiconductors, 2001, 35, 125-131.	0.2	2
117	Exciton recombination in δ-doped type-II GaAs/AlAs superlattices. Semiconductors, 2002, 36, 461-465.	0.2	2
118	Properties of Ge nanocrystals formed by implantation of Ge+ ions into SiO2 films with subsequent annealing under hydrostatic pressure. Semiconductors, 2003, 37, 462-467.	0.2	2
119	Exciton fine structure and spin dynamics in high purity AlGaAs layers. Semiconductor Science and Technology, 2004, 19, S377-S379.	1.0	2
120	Growth kinetics of (0001)GaN from Ga and NH3 fluxes. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 325-328.	0.8	2
121	Effect of electric field on recombination of self-trapped excitons in silicon nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 382-384.	0.8	2
122	Mechanism of the effect of the electric field of a surface acoustic wave on the low-temperature photoluminescence kinetics in type-II GaAs/AlAs superlattices. Semiconductors, 2007, 41, 205-210.	0.2	2
123	Linearly polarized photoluminescence from an ensemble of wurtzite GaN/AlN quantum dots. JETP Letters, 2010, 91, 452-454.	0.4	2
124	Trapping of charge carriers into InAs/AlAs quantum dots at liquid-helium temperature. Semiconductors, 2011, 45, 179-187.	0.2	2
125	Interaction of excitons with carriers accelerated by the electric field of a surface acoustic wave in type-II GaAs/AlAs superlattices. Physical Review B, 2012, 86, .	1.1	2
126	Moving photoluminescence band in AlGaN/GaN heterostructures. Semiconductor Science and Technology, 2015, 30, 085010.	1.0	2

#	Article	IF	CITATIONS
127	Nitridation of an unreconstructed and reconstructed (â^š31 ×â^š31)R ± 9° (0001) sapphire surface in an ammonia flow. Semiconductors, 2015, 49, 905-910.	0.2	2
128	Adjusting the position of the optimum operating point of a power heterostructure field-effect transistor by forming a gate potential barrier based on a donor-acceptor structure. Technical Physics Letters, 2015, 41, 142-145.	0.2	2
129	Minority carrier diffusion length in Alx Ga1-x N (x = 0.1) grown by ammonia molecular beam epitaxy. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 447-450.	0.8	2
130	Surface polariton spectroscopy of AlN films grown by ammonia MBE on (0001) Al ₂ O ₃ substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 439-442.	0.8	2
131	The influence of water–organic solvent composition on the morphology and luminescent properties of CdS nanoparticles obtained by chemical precipitation. Colloid Journal, 2016, 78, 30-36.	0.5	2
132	Radiation enhancement in doped AlGaN-structures upon optical pumping. Technical Physics Letters, 2017, 43, 46-49.	0.2	2
133	Determination of the energy structure of recombination centers in heavily doped Al _x Ga _{1-x} N:Si epitaxial layers with x > 0.5. Journal of Physics: Conference Series, 2018, 993, 012006.	0.3	2
134	On the Processes of the Self-Assembly of CdS Nanocrystal Arrays Formed by the Langmuir–Blodgett Technique. Semiconductors, 2019, 53, 1540-1544.	0.2	2
135	Optical Gain in Heavily Doped AlxGa1 –xN:Si Structures. Technical Physics Letters, 2019, 45, 951-954.	0.2	2
136	AlInSb/InSb Heterostructures for IR Photodetectors Grown by Molecular-Beam Epitaxy. Technical Physics Letters, 2020, 46, 154-157.	0.2	2
137	10.1007/s11453-008-1007-z. , 2010, 42, 52.		2
138	Annihilation of nonradiative recombination centers in GaAs/AlGaAs multiquantum well structures as a result of exposure to plasma. Semiconductors, 1997, 31, 1241-1243.	0.2	1
139	A suite of experimental conditions for photoluminescence monitoring of a heterojunction bipolar transistor structure. Technical Physics, 1997, 42, 1395-1399.	0.2	1
140	Transformation of nonradiative recombination centers in GaAs/AlGaAs quantum well structures upon treatment in a CF4 plasma followed by low-temperature annealing. Semiconductors, 1998, 32, 1293-1298.	0.2	1
141	Polariton luminescence in high-purity layers of AlGaAs solid solutions. JETP Letters, 2000, 71, 148-150.	0.4	1
142	Optically detected magnetic resonance of shallow donors in GaAs observed in photoluminescence kinetics. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 669-672.	0.8	1
143	Observation of exchange interaction effects under optical orientation of excitons in AlGaAs. JETP Letters, 2003, 77, 561-564.	0.4	1
144	Effect of uniform compression on photoluminescence spectra of GaAs layers heavily doped with beryllium. Semiconductors, 2004, 38, 277-280.	0.2	1

#	Article	IF	CITATIONS
145	Photoluminescence kinetics of wurtzite GaN quantum dots in an AlN matrix. JETP Letters, 2005, 81, 62-65.	0.4	1
146	Photoluminescence of Silicon Nanocrystals under the Effect of an Electric Field. Semiconductors, 2005, 39, 1319.	0.2	1
147	Prolonged kinetics of photoluminescence of two-dimensional electron gas in AlGaN/GaN heterostructure. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2095-2098.	0.8	1
148	Temperature dependence of photoluminescence from CdS nanoclusters formed in the matrix of Langmuir-Blodgett film. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3951-3954.	0.8	1
149	Photoluminescence of a single InAs/AlAs quantum dot. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2528-2529.	0.8	1
150	Materials for photodetectors based on intersubband transitions in GaN/AlGaN quantum dots. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2009, 76, 791.	0.2	1
151	Recombination of charge carriers in the GaAs-based p-i-n diode. Semiconductors, 2010, 44, 1362-1364.	0.2	1
152	Linear polarized photoluminescence from GaN quantum dots imbedded in AlN matrix. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2227-2229.	0.8	1
153	The microstructure of vertically coupled quantum dots ensembles by EXAFS spectroscopy. Journal of Surface Investigation, 2011, 5, 856-862.	0.1	1
154	Dependences of the optical characteristics of Al x Ga1â^'x N films on the substrate composition and polarity. Optoelectronics, Instrumentation and Data Processing, 2011, 47, 485-489.	0.2	1
155	Effect of annealing and nitridation on (0001) sapphire surface polaritons. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 377-380.	0.8	1
156	Influence of defects on the photoluminescence kinetics in GaN/AlN quantum-dot structures. Semiconductors, 2016, 50, 191-194.	0.2	1
157	Original method of GaN and InGaN quantum dots formation on (0001)AlN surface by ammonia molecular beam epitaxy. Journal of Physics: Conference Series, 2017, 864, 012007.	0.3	1
158	Change in the Character of Biaxial Stresses with an Increase in x from 0 to 0.7 in Al x Ga1 – xN:Si Layers Obtained by Ammonia Molecular Beam Epitaxy. Semiconductors, 2018, 52, 221-225.	0.2	1
159	Surface Polaritons in Silicon-Doped Aluminum and Gallium Nitride Films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2019, 127, 36-39.	0.2	1
160	Forming the GaN Nanocrystals on the Graphene-Like g-AlN and g-Si3N3 Surface. Physics of the Solid State, 2019, 61, 2329-2334.	0.2	1
161	Below bottleneck polaritonic radiation in ultra high quality AlGaAs alloys. Springer Proceedings in Physics, 2001, , 91-92.	0.1	1
162	Donor-acceptor nature of orange photoluminescence in AlN. Semiconductor Science and Technology, 2020, 35, 125006.	1.0	1

KONSTANTIN ZHURAVLEV

#	Article	IF	CITATIONS
163	High-Power Microwave Photodiodes Based on MBE-Grown InAlAs/InGaAs Heterostructures. Technical Physics, 2021, 66, 1072-1077.	0.2	1
164	Mechanisms of the Oxides Removal from the InP Surface under Annealing in an Arsenic Flux. Optoelectronics, Instrumentation and Data Processing, 2021, 57, 451-457.	0.2	1
165	Features of Optical Gain in Heavily Doped AlxGa1 – xN:Si-Structures. Technical Physics Letters, 2021, 47, 692-695.	0.2	1
166	A new recombination center in heavily doped GaAs: Zn grown by liquid-phase epitaxy. Semiconductors, 1998, 32, 1057-1061.	0.2	0
167	Visible photoluminescence from Ge+-ion-implanted SiO x N y annealed under hydrostatic pressure. , 2001, 4413, 237.		Ο
168	Power Microwave FETs Using Epitaxial AlGaAs/GaAs Structures. Russian Microelectronics, 2002, 31, 137-142.	0.1	0
169	Recombination of excitons bound on donor-acceptor impurity pairs in δ-doped type II GaAs/AlAs superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 657-660.	0.8	0
170	<title>Raman and HRTEM investigations of Ge nanocrystals produced by Ge<formula>^{<roman>+</roman>}</formula>-ion implantation of SiO<formula><inf><roman>2</roman></inf></formula> films and subsequent high-pressure annealing</title> 2003		0
171	Comparative analysis of (0001)GaN and (001)GaAs growth kinetics under Ga-rich conditions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 321-324.	0.8	Ο
172	<title>Photoluminescence kinetics of type II GaAs/AlAs superlattices under the influence of an electric field</title> . , 2005, , .		0
173	Long-Time Photoluminescence Kinetics of InAsâ^•AlAs Quantum Dots in a Magnetic Field. Semiconductors, 2005, 39, 27.	0.2	Ο
174	Dynamics of relaxation and trapping of excitons in AlxGa1-xAs films. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 906-909.	0.8	0
175	Exciton Relaxation and Spin Dynamics in AlxGa1â^'xAs Films. AlP Conference Proceedings, 2005, , .	0.3	Ο
176	Spin Orientation of Geminate Excitons in High Purity AlGaAs Layers. AIP Conference Proceedings, 2005, , .	0.3	0
177	Acceptor Photoluminescence Kinetics Of GaAs Under Resonant Photoexcitation Of Shallow Donors. AIP Conference Proceedings, 2005, , .	0.3	Ο
178	Mechanism of Recombination in InAs Quantum Dots in Indirect Bandgap AlGaAs Matrices. AlP Conference Proceedings, 2005, , .	0.3	0
179	Molecular Beam Epitaxy of Heterostructures on the Basis of III-V Materials for UHF Transistors. , 2006, , .		0
180	Microphotoluminescence of GaN/AlN quantum dots grown by MBE. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 2048-2051.	0.8	0

#	ARTICLE	IF	CITATIONS
181	Transport properties of the two-dimensional electron gas in GaN/AlGaN heterostructures grown by ammonia molecular-beam epitaxy. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2186-2189.	0.8	Ο
182	Special features of photoluminescence in silicon-on-insulator structures implanted with hydrogen ions. Semiconductors, 2006, 40, 420-426.	0.2	0
183	Exciton-polariton transition induced by elastic exciton-exciton collisions in ultrahigh quality AlGaAs alloys. Semiconductors, 2006, 40, 527-533.	0.2	0
184	Prolonged decay of free-to-bound photoluminescence in direct band gap InGaAs and AlGaAs alloys: magnetic resonance studies. Semiconductor Science and Technology, 2006, 21, 105-111.	1.0	0
185	New IR Photodetector Based on GaN QWs' or QDs' Located in Barrier of AlGaN/GaN Hemt Structure. , 2007, , .		0
186	High Power Pseudomorphic Hemts' with Doped Channel. , 2007, , .		0
187	Structural and optical properties of Si/l²-FeSi 2 /Si heterostructures fabricated by Fe ion implantation and Si MBE. Proceedings of SPIE, 2007, , .	0.8	Ο
188	k-Dependence of the Electron Spin-Flip Time in GaAs. AIP Conference Proceedings, 2007, , .	0.3	0
189	Luminescence and energy structure of ultrathin InAs/AlAs quantum wells. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2408-2411.	0.8	Ο
190	Modeling the operation of field-effect transistors based on GaAs/AlGaAs heterostructures. Optoelectronics, Instrumentation and Data Processing, 2009, 45, 337-341.	0.2	0
191	The form of the profile of heterointerfaces in (311)Ga GaAs/AlAs structures. Semiconductors, 2010, 44, 341-349.	0.2	0
192	Heterointerface relief in the (311)A-oriented GaAs-AlAs superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 272-275.	0.8	0
193	The influence of a doping profile on the characteristics of an ion-implanted GaAs field-effect transistor with a Schottky barrier. Semiconductors, 2011, 45, 1589-1599.	0.2	Ο
194	Numerical modeling of GaAs field-effect transistor characteristics as functions of channel doping profile parameters. Optoelectronics, Instrumentation and Data Processing, 2012, 48, 105-109.	0.2	0
195	Microsecond Lifetime of Exciton Spin Polarization in (In,Al)As/AlAs Quantum Dots. Optoelectronics, Instrumentation and Data Processing, 2013, 49, 514-519.	0.2	Ο
196	A silicon donor layer in heavily doped GaN. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 943-945.	0.1	0
197	Chromium mask for plasma-chemical etching of Al x Ga1 â^' x N layers. Technical Physics, 2014, 59, 1356-1359.	0.2	0
198	Temperature dependence of photoluminescence kinetics of GaN/AlN quantum dots. , 2014, , .		0

KONSTANTIN ZHURAVLEV

#	Article	IF	CITATIONS
199	Analysis of the microwave loss in AlGaAs/GaAs heterostructure pin-diodes. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 276-282.	0.2	Ο
200	Effect of spin polarization of excitons on the energy spectra of GaAs/AlGaAs heterostructures. Optoelectronics, Instrumentation and Data Processing, 2014, 50, 287-291.	0.2	0
201	Power pHEMTs operating at zero gate bias. , 2014, , .		Ο
202	Power dependence of unusual bands in photoluminescence spectra of AlGaN/GaN heterostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2015, 12, 372-375.	0.8	0
203	Structure of interfaces in GaN/AlN and Ge/Si multilayered heterosystems by XAFS spectroscopy. Journal of Physics: Conference Series, 2016, 774, 012128.	0.3	Ο
204	Calculating the nonequilibrium carrier relaxation kinetics in AlGaAs. Bulletin of the Russian Academy of Sciences: Physics, 2016, 80, 23-27.	0.1	0
205	Photoluminescence kinetics slowdown in an ensemble of GaN/AIN quantum dots upon tunneling interaction with defects. Semiconductors, 2016, 50, 1038-1042.	0.2	0
206	Features of current flow in structures based on Au/Ti/n-InAlAs Schottky barriers. Technical Physics Letters, 2017, 43, 581-583.	0.2	0
207	Nature of luminescence of PbS quantum dots synthesized in a Langmuir–Blodgett matrix. JETP Letters, 2017, 106, 18-22.	0.4	0
208	Defect-related transitions in luminescence of InAlAs on InP. Journal of Physics: Conference Series, 2017, 864, 012075.	0.3	0
209	Properties of intensive defect-related band in photoluminescence spectra of heavily doped AlxGa1-xN:Si layers. Journal of Physics: Conference Series, 2017, 864, 012071.	0.3	0
210	Light emission of heavily doped AlGaN structures under optical pumping. Journal of Semiconductors, 2018, 39, 043002.	2.0	0
211	Broadband Spontaneous and Stimulated Luminescence of Heavily Doped AlxGa1 – xN Structures. Atmospheric and Oceanic Optics, 2018, 31, 405-409.	0.6	0
212	Determination of Electron Temperature in DA-pHEMT Heterostructures by Shubnikov – de Haas Oscillation Method. Russian Physics Journal, 2018, 61, 1202-1209.	0.2	0
213	Amplified luminescence of heavily doped AlxGa1-xN structures under optical pumping. Quantum Electronics, 2018, 48, 215-221.	0.3	0
214	AlGaAs/GaAs Quantum Well Infrared Photodetectors. , 0, , .		0
215	Structure and Charge of Nitrogen and Gallium Vacancies Located in the AlN/GaN Interface of Quantim Wells. , 2018, , .		0
216	The Influence of the InAlAs Layer Surface Morphology on the Temperature Dependence of Parameters of Au/Ti/n-InAlAs(001) Schottky Diodes. Technical Physics Letters, 2019, 45, 180-184.	0.2	0

#	Article	IF	CITATIONS
217	High-power microwave photodiodes with Schottky contact based on InAlAs/InGaAs/InP heteroepitaxial structures. , 2019, , .		0
218	The DA-pHEMT heterostructures for power microwave transistors. , 2019, , .		0
219	Mechanisms of exciton photoluminescence quenching in the electric field of a standing surface acoustic wave. International Journal of Modern Physics B, 2019, 33, 1950032.	1.0	0
220	Growth of AlGaN:Si Heterostructures with Bragg Reflectors for the Blue-Green Spectral Range. Optoelectronics, Instrumentation and Data Processing, 2019, 55, 501-507.	0.2	0
221	Heterostructure InGaAlAs/InAlAs on the InP substrate for the electro-optical modulator based on the quantum confined Stark effect. ITM Web of Conferences, 2019, 30, 14004.	0.4	0
222	AlSb/InAs Heterostructures for Microwave Transistors. Technical Physics Letters, 2021, 47, 139-142.	0.2	0
223	InAs Islands Formation on the InP(001) During High- Temperature Annealing in an As Flux. , 2021, , .		0
224	LINEARLY POLARIZED PHOTOLUMINESCENCE FROM GaN QUANTUM DOTS EMBEDDED IN AIN MATRIX. , 2009, , .		0
225	A stochastic model, simulation, and application to aggregation of cadmium sulfide nanocrystals upon evaporation of the Langmuir–Blodgett matrix. Monte Carlo Methods and Applications, 2021, .	0.3	0
226	New Type of Heterostructures for Powerful pHEMT Transistors. Optoelectronics, Instrumentation and Data Processing, 2020, 56, 478-484.	0.2	0
227	MECHANISMS FOR REMOVING OXIDES FROM THE INP SURFACE AT ANNEALING IN AN ARSENIC FLUX. Avtometriya, 2021, 57, 11-17.	0.0	0
228	High-power InAlAs/InGaAs Schottky barrier photodiodes for analog microwave signal transmission. Journal of Semiconductors, 2022, 43, 012302.	2.0	0
229	A Millimeter-Wave Field-Effect Transistor Based on a Pseudomorphic Heterostructure with an Additional Potential Barrier. Technical Physics Letters, 2021, 47, 329-332.	0.2	0
230	Photoluminescence of Multiple GaN/AlN Quantum Wells. Optoelectronics, Instrumentation and Data Processing, 2021, 57, 526-531.	0.2	0