
Filip Mercl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Biogeochemical Legacy of Arctic Subglacial Sediments Exposed by Glacier Retreat. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
2	Pyrolysis of biosolids as an effective tool to reduce the uptake of pharmaceuticals by plants. Journal of Hazardous Materials, 2021, 405, 124278.	6.5	17
3	Co-application of high temperature biochar with 3,4-dimethylpyrazole-phosphate treated ammonium sulphate improves nitrogen use efficiency in maize. Scientific Reports, 2021, 11, 5711.	1.6	8
4	Occurrence of synthetic polycyclic and nitro musk compounds in sewage sludge from municipal wastewater treatment plants. Science of the Total Environment, 2021, 801, 149777.	3.9	16
5	The role of low molecular weight organic acids in the release of phosphorus from sewage sludge-based biochar. International Journal of Transgender Health, 2021, 14, 599-609.	1.1	10
6	Improved phosphorus fertilisation efficiency of wood ash by fungal strains Penicillium sp. PK112 and Trichoderma harzianum OMC08 on acidic soil. Applied Soil Ecology, 2020, 147, 103360.	2.1	12
7	Long-term willows phytoremediation treatment of soil contaminated by fly ash polycyclic aromatic hydrocarbons from straw combustion. Environmental Pollution, 2020, 264, 114787.	3.7	18
8	Changes in availability of Ca, K, Mg, P and S in sewage sludge as affected by pyrolysis temperature. Plant, Soil and Environment, 2020, 66, 143-148.	1.0	8
9	The Role of Biochar and Soil Properties in Determining the Available Content of Al, Cu, Zn, Mn, and Cd in Soil. Agronomy, 2020, 10, 885.	1.3	12
10	Soil Amendments with Lignocellulosic Residues of Biorefinery Processes Affect Soil Organic Matter Accumulation and Microbial Growth. ACS Sustainable Chemistry and Engineering, 2020, 8, 3381-3391.	3.2	11
11	Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 2019, 19, 2405-2416.	1.5	130
12	Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Environmental Science and Pollution Research, 2019, 26, 20866-20878.	2.7	3
13	Bioremediation of polycyclic aromatic hydrocarbons (PAHs) present in biomass fly ash by co-composting and co-vermicomposting. Journal of Hazardous Materials, 2019, 369, 79-86.	6.5	31
14	Selected persistent organic pollutants (POPs) in the rhizosphere of sewage sludge-treated soil: implications for the biodegradability of POPs. Archives of Agronomy and Soil Science, 2019, 65, 994-1009.	1.3	17
15	High temperature-produced biochar can be efficient in nitrate loss prevention and carbon sequestration. Geoderma, 2019, 338, 48-55.	2.3	43
16	Effects of summer and winter harvesting on element phytoextraction efficiency of <i>Salix</i> and <i>Populus</i> clones planted on contaminated soil. International Journal of Phytoremediation, 2018, 20, 499-506.	1.7	10
17	Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs–spiked soil. Ecotoxicology and Environmental Safety, 2018, 153, 16-22.	2.9	31
18	Co-application of wood ash and Paenibacillus mucilaginosus to soil: the effect on maize nutritional status, root exudation and composition of soil solution. Plant and Soil, 2018, 428, 105-122.	1.8	14

FILIP MERCL

#	Article	IF	CITATIONS
19	Biochar, wood ash and humic substances mitigating trace elements stress in contaminated sandy loam soil: Evidence from an integrative approach. Chemosphere, 2018, 203, 228-238.	4.2	42
20	A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 2018, 147, 165-174.	2.9	97
21	The improvement of multi-contaminated sandy loam soil chemical and biological properties by the biochar, wood ash, and humic substances amendments. Environmental Pollution, 2017, 229, 516-524.	3.7	35
22	Influence of Rhizon MOM suction cup and Triticum aestivum L. on the concentration of organic and inorganic anions in soil solution. Journal of Soils and Sediments, 2017, 17, 820-826.	1.5	8
23	Fertilization efficiency of wood ash pellets amended by gypsum and superphosphate in the ryegrass growth. Plant, Soil and Environment, 2017, 63, 47-54.	1.0	14
24	Changes in Nutrient Plant Availability in Loam and Sandy Clay Loam Soils after Wood Fly and Bottom Ash Amendment. Agronomy Journal, 2016, 108, 487-497.	0.9	8
25	Nutrient Dynamics in Soil Solution and Wheat Response after Biomass Ash Amendments. Agronomy Journal, 2016, 108, 2222-2234.	0.9	20
26	Investigation of polycyclic aromatic hydrocarbon content in fly ash and bottom ash of biomass incineration plants in relation to the operating temperature and unburned carbon content. Science of the Total Environment, 2016, 563-564, 53-61.	3.9	46
27	Effect of bioeffectors and recycled P-fertiliser products on the growth of spring wheat. Chemical and Biological Technologies in Agriculture, 2016, 3, .	1.9	22