Marike Gabrielson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3914091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Association analysis identifies 65 new breast cancer risk loci. Nature, 2017, 551, 92-94.	27.8	1,099
2	Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. American Journal of Human Genetics, 2019, 104, 21-34.	6.2	711
3	Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. New England Journal of Medicine, 2021, 384, 428-439.	27.0	532
4	Genomic analyses identify hundreds of variants associated with age at menarche and support a role for puberty timing in cancer risk. Nature Genetics, 2017, 49, 834-841.	21.4	426
5	Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer. Nature Genetics, 2017, 49, 1767-1778.	21.4	289
6	A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer. Nature Genetics, 2018, 50, 968-978.	21.4	184
7	Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes. Nature Genetics, 2020, 52, 56-73.	21.4	120
8	Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer. Nature Communications, 2016, 7, 11375.	12.8	93
9	Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer. Nature Communications, 2019, 10, 1741.	12.8	90
10	Cohort Profile: The Karolinska Mammography Project for Risk Prediction of Breast Cancer (KARMA). International Journal of Epidemiology, 2017, 46, 1740-1741g.	1.9	88
11	Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium. International Journal of Epidemiology, 2018, 47, 526-536.	1.9	88
12	Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis. International Journal of Epidemiology, 2019, 48, 795-806.	1.9	81
13	Genome-wide association study of germline variants and breast cancer-specific mortality. British Journal of Cancer, 2019, 120, 647-657.	6.4	52
14	Pathology of Tumors Associated With Pathogenic Germline Variants in 9 Breast Cancer Susceptibility Genes. JAMA Oncology, 2022, 8, e216744.	7.1	51
15	Inhibition of Hedgehog Signaling Decreases Proliferation and Clonogenicity of Human Mesenchymal Stem Cells. PLoS ONE, 2011, 6, e16798.	2.5	47
16	Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk. Journal of the National Cancer Institute, 2021, 113, 329-337.	6.3	45
17	Prospective evaluation of a breast-cancer risk model integrating classical risk factors and polygenic risk in 15 cohorts from six countries. International Journal of Epidemiology, 2022, 50, 1897-1911.	1.9	43
18	Expression of Mitochondrial Regulators PGC11± and TFAM as Putative Markers of Subtype and Chemoresistance in Epithelial Ovarian Carcinoma. PLoS ONE, 2014, 9, e107109.	2.5	35

MARIKE GABRIELSON

#	Article	IF	CITATIONS
19	Low-Dose Tamoxifen for Mammographic Density Reduction: A Randomized Controlled Trial. Journal of Clinical Oncology, 2021, 39, 1899-1908.	1.6	33
20	Mammographic Density Change and Risk of Breast Cancer. Journal of the National Cancer Institute, 2020, 112, 391-399.	6.3	32
21	Transcriptomeâ€wide association study of breast cancer risk by estrogenâ€receptor status. Genetic Epidemiology, 2020, 44, 442-468.	1.3	32
22	Mammographic microcalcifications and risk of breast cancer. British Journal of Cancer, 2021, 125, 759-765.	6.4	32
23	The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer. Npj Breast Cancer, 2019, 5, 38.	5.2	28
24	Determinants of Mammographic Density Change. JNCI Cancer Spectrum, 2019, 3, pkz004.	2.9	27
25	Interval breast cancer is associated with other types of tumors. Nature Communications, 2019, 10, 4648.	12.8	25
26	Hormonal determinants of mammographic density and density change. Breast Cancer Research, 2020, 22, 95.	5.0	20
27	The <i>BRCA2</i> c.68-7TÂ>ÂA variant is not pathogenic: A model for clinical calibration of spliceogenicity. Human Mutation, 2018, 39, 729-741.	2.5	19
28	Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Medicine, 2022, 14, 51.	8.2	19
29	Amount of stroma is associated with mammographic density and stromal expression of oestrogen receptor in normal breast tissues. Breast Cancer Research and Treatment, 2016, 158, 253-261.	2.5	17
30	The mitochondrial transporter SLC25A43 is frequently deleted and may influence cell proliferation in HER2-positive breast tumors. BMC Cancer, 2012, 12, 350.	2.6	16
31	Inclusion of Plasma Prolactin Levels in Current Risk Prediction Models of Premenopausal and Postmenopausal Breast Cancer. JNCI Cancer Spectrum, 2018, 2, pky055.	2.9	16
32	Altered PPARγ Coactivator-1 Alpha Expression in Abdominal Aortic Aneurysm: Possible Effects on Mitochondrial Biogenesis. Journal of Vascular Research, 2016, 53, 17-26.	1.4	15
33	Association of reproductive history with breast tissue characteristics and receptor status in the normal breast. Breast Cancer Research and Treatment, 2018, 170, 487-497.	2.5	15
34	Distinct Reproductive Risk Profiles for Intrinsic-Like Breast Cancer Subtypes: Pooled Analysis of Population-Based Studies. Journal of the National Cancer Institute, 2022, 114, 1706-1719.	6.3	14
35	Mitochondrial regulation of cell cycle progression through SLC25A43. Biochemical and Biophysical Research Communications, 2016, 469, 1090-1096.	2.1	11
36	<i>PHIP</i> - a novel candidate breast cancer susceptibility locus on 6q14.1. Oncotarget, 2017, 8, 102769-102782.	1.8	9

MARIKE GABRIELSON

#	Article	IF	CITATIONS
37	Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density. Breast Cancer Research, 2018, 20, 14.	5.0	8
38	Predictors of mammographic microcalcifications. International Journal of Cancer, 2021, 148, 1132-1143.	5.1	8
39	The mitochondrial transport protein SLC25A43 affects drug efficacy and drug-induced cell cycle arrest in breast cancer cell lines. Oncology Reports, 2013, 29, 1268-1274.	2.6	7
40	Inclusion of Endogenous Plasma Dehydroepiandrosterone Sulfate and Mammographic Density in Risk Prediction Models for Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 574-581.	2.5	6
41	Rare germline copy number variants (CNVs) and breast cancer risk. Communications Biology, 2022, 5, 65.	4.4	6
42	Two truncating variants in FANCC and breast cancer risk. Scientific Reports, 2019, 9, 12524.	3.3	5
43	PGC1α and VDAC1 expression in endometrial cancer. Molecular and Clinical Oncology, 2020, 14, 42.	1.0	5
44	Topical Endoxifen for Mammographic Density Reduction—A Randomized Controlled Trial. Oncologist, 2022, 27, e597-e600.	3.7	5
45	Genome-wide interaction analysis of menopausal hormone therapy use and breast cancer risk among 62,370 women. Scientific Reports, 2022, 12, 6199.	3.3	2
46	Circulating proteins reveal prior use of menopausal hormonal therapy and increased risk of breast cancer. Translational Oncology, 2022, 17, 101339.	3.7	1