
Patrick Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3913124/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temporally and spatially resolved X-ray densitometry in a shock tube. Combustion and Flame, 2021, 224, 136-149.	2.8	5
2	Pyrolysis of ethanol studied in a new high-repetition-rate shock tube coupled to synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy. Combustion and Flame, 2021, 226, 53-68.	2.8	8
3	Initiation reactions in the high temperature decomposition of styrene. Physical Chemistry Chemical Physics, 2021, 23, 18432-18448.	1.3	7
4	High pressure, high flow rate batch mixing apparatus for high throughput experiments. Review of Scientific Instruments, 2021, 92, 114104.	0.6	3
5	An experimental and theoretical study of the high temperature reactions of the four butyl radical isomers. Physical Chemistry Chemical Physics, 2020, 22, 18304-18319.	1.3	16
6	Auto-Ignition and Reaction Front Dynamics in Mixtures With Temperature and Concentration Stratification. Frontiers in Mechanical Engineering, 2020, 6, .	0.8	4
7	Kinetic modeling of ignition in miniature shock tube. Proceedings of the Combustion Institute, 2019, 37, 593-601.	2.4	5
8	Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour. Combustion and Flame, 2019, 200, 207-218.	2.8	29
9	On the Interpretation and Correlation of Highâ€Temperature Ignition Delays in Reactors with Varying Thermodynamic Conditions. International Journal of Chemical Kinetics, 2018, 50, 410-424.	1.0	9
10	High temperature pyrolysis of 2-methyl furan. Physical Chemistry Chemical Physics, 2018, 20, 10826-10837.	1.3	17
11	Chemical thermometry in miniature HRRST using 1,1,1-trifluoroethane dissociation. Proceedings of the Combustion Institute, 2017, 36, 307-314.	2.4	10
12	Note: An improved solenoid driver valve for miniature shock tubes. Review of Scientific Instruments, 2016, 87, 056110.	0.6	13
13	Dissociation of ortho -benzyne radicals in the high temperature fall-off regime. Proceedings of the Combustion Institute, 2015, 35, 145-152.	2.4	8
14	Probing Combustion Chemistry in a Miniature Shock Tube with Synchrotron VUV Photo Ionization Mass Spectrometry. Analytical Chemistry, 2015, 87, 2345-2352.	3.2	50
15	On AlO Emission Spectroscopy as a Diagnostic in Energetic Materials Testing. Propellants, Explosives, Pyrotechnics, 2013, 38, 577-585.	1.0	42
16	A miniature high repetition rate shock tube. Review of Scientific Instruments, 2013, 84, 094102.	0.6	38
17	Dissociation of dimethyl ether at high temperatures. Proceedings of the Combustion Institute, 2013, 34, 591-598.	2.4	23
18	Single Pulse Shock Tube Study of Allyl Radical Recombination. Journal of Physical Chemistry A, 2013, 117, 4762-4776.	1.1	33

PATRICK LYNCH

#	Article	IF	CITATIONS
19	Recombination of Allyl Radicals in the High Temperature Fall-Off Regime. Journal of Physical Chemistry A, 2013, 117, 4750-4761.	1.1	26
20	Shock Tube Investigation of CH ₃ + CH ₃ OCH ₃ . Journal of Physical Chemistry A, 2012, 116, 7287-7292.	1.1	29
21	Micro-alumina particle volatilization temperature measurements in a heterogeneous shock tube. Combustion and Flame, 2012, 159, 793-801.	2.8	12
22	Combustion Measurements of Fuel-Rich Aluminum and Molybdenum Oxide Nano-Composite Mixtures. Propellants, Explosives, Pyrotechnics, 2010, 35, 93-99.	1.0	21
23	Emissivity of Aluminum-Oxide Particle Clouds: Application to Pyrometry of Explosive Fireballs. Journal of Thermophysics and Heat Transfer, 2010, 24, 301-308.	0.9	57
24	Gas-Phase Reaction in Nanoaluminum Combustion. Combustion Science and Technology, 2010, 182, 842-857.	1.2	69
25	Optical Spectroscopy of Fireballs from Metallized Reactive Materials. , 2010, , .		6
26	Optical depth measurements of fireballs from aluminized high explosives. Optics and Lasers in Engineering, 2009, 47, 1009-1015.	2.0	45
27	A correlation for burn time of aluminum particles in the transition regime. Proceedings of the Combustion Institute, 2009, 32, 1887-1893.	2.4	105
28	Size Distribution Effects in Heterogeneous Shock Tube Burntime Experiments. , 2009, , .		2
29	The Presence of Gas Phase Species in Micro- and Nano-Aluminum Combustion. , 2009, , .		0
30	The Emissivity of Micro- and Nano- Particles in Non-Reacting Environments. , 2009, , .		1
31	Combustion of Aluminum Particles in the Transition Regime Between the Diffusion and Kinetic Limits. , 2008, , .		3