
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3912153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	pH-Responsive doxorubicin delivery using shear-thinning biomaterials for localized melanoma treatment. Nanoscale, 2022, 14, 350-360.	2.8	15
2	A Dual ross‣inked Hydrogel Patch for Promoting Diabetic Wound Healing. Small, 2022, 18, e2106172.	5.2	98
3	Flexible patch with printable and antibacterial conductive hydrogel electrodes for accelerated wound healing. Biomaterials, 2022, 285, 121479.	5.7	68
4	Coâ€Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. Small, 2022, 18, e2107714.	5.2	23
5	Biofabrication of endothelial cell, dermal fibroblast, and multilayered keratinocyte layers for skin tissue engineering. Biofabrication, 2021, 13, 035030.	3.7	54
6	Multiâ€Dimensional Printing for Bone Tissue Engineering. Advanced Healthcare Materials, 2021, 10, e2001986.	3.9	41
7	Injectable openâ€porous <scp>PLGA</scp> microspheres as cell carriers for cartilage regeneration. Journal of Biomedical Materials Research - Part A, 2021, 109, 2091-2100.	2.1	26
8	Reconstructing the tumor architecture into organoids. Advanced Drug Delivery Reviews, 2021, 176, 113839.	6.6	20
9	Cancerâ€onâ€aâ€Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. Small, 2021, 17, e2004282.	5.2	30
10	Electrochemical cytosensors for detection of breast cancer cells. Biosensors and Bioelectronics, 2020, 151, 111984.	5.3	69
11	Non-transdermal microneedles for advanced drug delivery. Advanced Drug Delivery Reviews, 2020, 165-166, 41-59.	6.6	80
12	Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics. Advanced Functional Materials, 2020, 30, 1906016.	7.8	55
13	Engineering Antiviral Vaccines. ACS Nano, 2020, 14, 12370-12389.	7.3	50
14	Engineered Microneedle Patches for Controlled Release of Active Compounds: Recent Advances in Release Profile Tuning. Advanced Therapeutics, 2020, 3, 2000171.	1.6	52
15	Wearable Tactile Sensors: Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables (Adv.) Tj ETQq1 I	1 0.78431	4 rgBT /Overla
16	Microneedle-based bioassays. Nanoscale Advances, 2020, 2, 4295-4304.	2.2	16
17	Combined Effects of Electric Stimulation and Microgrooves in Cardiac Tissueâ€onâ€aâ€Chip for Drug Screening. Small Methods, 2020, 4, 2000438.	4.6	15
18	Gelatin Methacryloylâ€Based Tactile Sensors for Medical Wearables. Advanced Functional Materials, 2020, 30, 2003601.	7.8	112

#	Article	IF	CITATIONS
19	Biodegradable <i>β</i> â€Cyclodextrin Conjugated Gelatin Methacryloyl Microneedle for Delivery of Waterâ€Insoluble Drug. Advanced Healthcare Materials, 2020, 9, e2000527.	3.9	91
20	Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing. Small, 2020, 16, e2001837.	5.2	25
21	CRISPR-Cas12a delivery by DNA-mediated bioresponsive editing for cholesterol regulation. Science Advances, 2020, 6, eaba2983.	4.7	77
22	Stimuliâ€Responsive Delivery of Growth Factors for Tissue Engineering. Advanced Healthcare Materials, 2020, 9, e1901714.	3.9	86
23	Angiogenesis: Mechanical Cues Regulating Proangiogenic Potential of Human Mesenchymal Stem Cells through YAPâ€Mediated Mechanosensing (Small 25/2020). Small, 2020, 16, 2070142.	5.2	0
24	Hydrogelâ€Enabled Transfer Printing: Hydrogelâ€Enabled Transferâ€Printing of Conducting Polymer Films for Soft Organic Bioelectronics (Adv. Funct. Mater. 6/2020). Advanced Functional Materials, 2020, 30, 2070038.	7.8	2
25	Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid. Small, 2020, 16, e1905910.	5.2	104
26	Synthesis of Injectable Shearâ€Thinning Biomaterials of Various Compositions of Gelatin and Synthetic Silicate Nanoplatelet. Biotechnology Journal, 2020, 15, e1900456.	1.8	25
27	Engineering Biomaterials with Micro/Nanotechnologies for Cell Reprogramming. ACS Nano, 2020, 14, 1296-1318.	7.3	39
28	A Patch of Detachable Hybrid Microneedle Depot for Localized Delivery of Mesenchymal Stem Cells in Regeneration Therapy. Advanced Functional Materials, 2020, 30, 2000086.	7.8	91
29	Microneedle Patches: Gelatin Methacryloyl Microneedle Patches for Minimally Invasive Extraction of Skin Interstitial Fluid (Small 16/2020). Small, 2020, 16, 2070086.	5.2	4
30	Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS Applied Bio Materials, 2020, 3, 6908-6918.	2.3	12
31	Combinatorial screening of biochemical and physical signals for phenotypic regulation of stem cell–based cartilage tissue engineering. Science Advances, 2020, 6, eaaz5913.	4.7	42
32	Charge-switchable polymeric complex for glucose-responsive insulin delivery in mice and pigs. Science Advances, 2019, 5, eaaw4357.	4.7	104
33	A Human Liverâ€onâ€aâ€Chip Platform for Modeling Nonalcoholic Fatty Liver Disease. Advanced Biology, 2019, 3, e1900104.	3.0	50
34	A Microfabricated Sandwiching Assay for Nanoliter and Highâ€Throughput Biomarker Screening. Small, 2019, 15, e1900300.	5.2	18
35	Highâ€Throughput Drug Screening: A Microfabricated Sandwiching Assay for Nanoliter and Highâ€Throughput Biomarker Screening (Small 15/2019). Small, 2019, 15, 1970078.	5.2	1
36	A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery. Biomicrofluidics, 2019, 13, 064125.	1.2	118

#	Article	IF	CITATIONS
37	Biodegradable Gelatin Methacryloyl Microneedles for Transdermal Drug Delivery. Advanced Healthcare Materials, 2019, 8, e1801054.	3.9	177
38	Organâ€onâ€a hip for Cancer and Immune Organs Modeling. Advanced Healthcare Materials, 2019, 8, e1801363.	3.9	111
39	Engineering Precision Medicine. Advanced Science, 2019, 6, 1801039.	5.6	55
40	PDâ€l Blockade Cellular Vesicles for Cancer Immunotherapy. Advanced Materials, 2018, 30, e1707112.	11.1	196
41	Core–Shell Microneedle Gel for Self-Regulated Insulin Delivery. ACS Nano, 2018, 12, 2466-2473.	7.3	207
42	Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nature Chemical Biology, 2018, 14, 86-93.	3.9	184
43	Cancer Immunotherapy: PD†Blockade Cellular Vesicles for Cancer Immunotherapy (Adv. Mater.) Tj ETQq1 1 0	.784314 rş 11.1	gBT_/Overloci
44	A peptide delivery system sneaks CRISPR into cells. Journal of Biological Chemistry, 2018, 293, 17306-17307.	1.6	12
45	Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nature Biomedical Engineering, 2018, 2, 831-840.	11.6	220
46	Injectable Bioresponsive Gel Depot for Enhanced Immune Checkpoint Blockade. Advanced Materials, 2018, 30, e1801527.	11.1	233
47	In situ activation of platelets with checkpoint inhibitors for post-surgical cancer immunotherapy. Nature Biomedical Engineering, 2017, 1, .	11.6	390
48	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie - International Edition, 2017, 56, 2588-2593.	7.2	124
49	Relay Drug Delivery for Amplifying Targeting Signal and Enhancing Anticancer Efficacy. Advanced Materials, 2017, 29, 1605803.	11.1	56
50	Anaerobeâ€Inspired Anticancer Nanovesicles. Angewandte Chemie, 2017, 129, 2632-2637.	1.6	20
51	Innentitelbild: Anaerobeâ€Inspired Anticancer Nanovesicles (Angew. Chem. 10/2017). Angewandte Chemie, 2017, 129, 2558-2558.	1.6	3
52	Red Blood Cells for Glucoseâ€Responsive Insulin Delivery. Advanced Materials, 2017, 29, 1606617.	11.1	126
53	Drug Delivery Devices: Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia (Small) Tj ETQq1 I	l 0.784314 5.2	l rgBT /Overl
54	Insulinâ€Responsive Glucagon Delivery for Prevention of Hypoglycemia. Small, 2017, 13, 1603028.	5.2	36

#	Article	IF	CITATIONS
55	In Vivo Multienzyme Complex Coconstruction ofN-Acetylneuraminic Acid Lyase andN-Acetylglucosamine-2-epimerase for Biosynthesis ofN-Acetylneuraminic Acid. Journal of Agricultural and Food Chemistry, 2017, 65, 7467-7475.	2.4	11
56	Injectable Thermosensitive Polypeptide-Based CDDP-Complexed Hydrogel for Improving Localized Antitumor Efficacy. Biomacromolecules, 2017, 18, 4341-4348.	2.6	33
57	Tailoring non-viral delivery vehicles for transporting genome-editing tools. Science China Materials, 2017, 60, 511-515.	3.5	13
58	Leveraging Physiology for Precision Drug Delivery. Physiological Reviews, 2017, 97, 189-225.	13.1	125
59	Bioengineering of Artificial Antigen Presenting Cells and Lymphoid Organs. Theranostics, 2017, 7, 3504-3516.	4.6	54
60	ATP-Responsive and Near-Infrared-Emissive Nanocarriers for Anticancer Drug Delivery and Real-Time Imaging. Theranostics, 2016, 6, 1053-1064.	4.6	54
61	Lightâ€Activated Hypoxiaâ€Responsive Nanocarriers for Enhanced Anticancer Therapy. Advanced Materials, 2016, 28, 3313-3320.	11.1	421
62	Internalized compartments encapsulated nanogels for targeted drug delivery. Nanoscale, 2016, 8, 9178-9184.	2.8	29
63	Dual targeted nanocarrier for brain ischemic stroke treatment. Journal of Controlled Release, 2016, 233, 64-71.	4.8	124
64	Transformable DNA nanocarriers for plasma membrane targeted delivery of cytokine. Biomaterials, 2016, 96, 1-10.	5.7	46
65	Inflammationâ€Triggered Cancer Immunotherapy by Programmed Delivery of CpG and Antiâ€PD1 Antibody. Advanced Materials, 2016, 28, 8912-8920.	11.1	286
66	Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus. Advanced Materials, 2016, 28, 9573-9580.	11.1	182
67	Anticancer Therapy: Light-Activated Hypoxia-Responsive Nanocarriers for Enhanced Anticancer Therapy (Adv. Mater. 17/2016). Advanced Materials, 2016, 28, 3226-3226.	11.1	6
68	Tumor Microenvironment-Mediated Construction and Deconstruction of Extracellular Drug-Delivery Depots. Nano Letters, 2016, 16, 1118-1126.	4.5	148
69	ATP-Responsive Drug Delivery Systems. Expert Opinion on Drug Delivery, 2016, 13, 311-314.	2.4	45
70	Recent advances of cocktail chemotherapy by combination drug delivery systems. Advanced Drug Delivery Reviews, 2016, 98, 19-34.	6.6	496
71	Nanomedicine: Anticancer Plateletâ€Mimicking Nanovehicles (Adv. Mater. 44/2015). Advanced Materials, 2015, 27, 7014-7014.	11.1	8
72	Anticancer Plateletâ€Mimicking Nanovehicles. Advanced Materials, 2015, 27, 7043-7050.	11.1	497

#	Article	IF	CITATIONS
73	Selfâ€Assembled DNA Nanoclews for the Efficient Delivery of CRISPR–Cas9 for Genome Editing. Angewandte Chemie - International Edition, 2015, 54, 12029-12033.	7.2	517
74	Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis process. Scientific Reports, 2015, 5, 9341.	1.6	16
75	Transformable liquid-metal nanomedicine. Nature Communications, 2015, 6, 10066.	5.8	466
76	ATP-responsive DNA-graphene hybrid nanoaggregates for anticancer drug delivery. Biomaterials, 2015, 50, 67-74.	5.7	159
77	Drug Delivery: Furinâ€Mediated Sequential Delivery of Anticancer Cytokine and Smallâ€Molecule Drug Shuttled by Graphene (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 958-958.	11.1	1
78	Engineering DNA scaffolds for delivery of anticancer therapeutics. Biomaterials Science, 2015, 3, 1018-1024.	2.6	57
79	Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8260-8265.	3.3	655
80	Titelbild: Self-Assembled DNA Nanoclews for the Efficient Delivery of CRISPR-Cas9 for Genome Editing (Angew. Chem. 41/2015). Angewandte Chemie, 2015, 127, 12045-12045.	1.6	0
81	Rolling circle replication for engineering drug delivery carriers. Therapeutic Delivery, 2015, 6, 765-768.	1.2	13
82	Advances in Anticancer Protein Delivery using Micro…Nanoparticles. Particle and Particle Systems Characterization, 2014, 31, 1204-1222.	1.2	30
83	Cocoon-Like Self-Degradable DNA Nanoclew for Anticancer Drug Delivery. Journal of the American Chemical Society, 2014, 136, 14722-14725.	6.6	295
84	Engineered cytidine triphosphate synthetase with reduced product inhibition. Protein Engineering, Design and Selection, 2014, 27, 225-233.	1.0	10
85	Stimuli-responsive nanomaterials for therapeutic protein delivery. Journal of Controlled Release, 2014, 194, 1-19.	4.8	361