Rémi Marsac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3911823/publications.pdf Version: 2024-02-01

RÃOMI MARSAC

#	Article	lF	CITATIONS
1	Geochemical modeling of Fe(II) binding to humic and fulvic acids. Chemical Geology, 2014, 372, 109-118.	3.3	106
2	Rare earth element patterns: A tool for identifying trace metal sources during wetland soil reduction. Chemical Geology, 2011, 284, 127-137.	3.3	102
3	An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-Model VI coupling. Geochimica Et Cosmochimica Acta, 2011, 75, 5625-5637.	3.9	79
4	Metal loading effect on rare earth element binding to humic acid: Experimental and modelling evidence. Geochimica Et Cosmochimica Acta, 2010, 74, 1749-1761.	3.9	74
5	Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling. Geochimica Et Cosmochimica Acta, 2015, 151, 192-202.	3.9	66
6	Effects of Fe competition on REE binding to humic acid: Origin of REE pattern variability in organic waters. Chemical Geology, 2013, 342, 119-127.	3.3	64
7	Biogeochemical Factors Affecting Rare Earth Element Distribution in Shallow Wetland Groundwater. Aquatic Geochemistry, 2015, 21, 197-215.	1.3	54
8	Aluminium competitive effect on rare earth elements binding to humic acid. Geochimica Et Cosmochimica Acta, 2012, 89, 1-9.	3.9	43
9	Flexible Strategy for Immobilizing Redox-Active Compounds Using in Situ Generation of Diazonium Salts. Investigations of the Blocking and Catalytic Properties of the Layers. Langmuir, 2009, 25, 12742-12749.	3.5	40
10	Oxolinic Acid Binding at Goethite and Akaganéite Surfaces: Experimental Study and Modeling. Environmental Science & Technology, 2016, 50, 660-668.	10.0	39
11	Cadmium Isotope Fractionation during Complexation with Humic Acid. Environmental Science & Technology, 2021, 55, 7430-7444.	10.0	37
12	Neptunium redox speciation at the illite surface. Geochimica Et Cosmochimica Acta, 2015, 152, 39-51.	3.9	35
13	Thiol groups controls on arsenite binding by organic matter: New experimental and modeling evidence. Journal of Colloid and Interface Science, 2015, 460, 310-320.	9.4	34
14	Aqueous chemistry of Ce(<scp>iv</scp>): estimations using actinide analogues. Dalton Transactions, 2017, 46, 13553-13561.	3.3	34
15	Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals. Geochemical Transactions, 2014, 15, 9.	0.7	29
16	Sensitive Redox Speciation of Iron, Neptunium, and Plutonium by Capillary Electrophoresis Hyphenated to Inductively Coupled Plasma Sector Field Mass Spectrometry. Analytical Chemistry, 2015, 87, 9786-9794.	6.5	29
17	Sorption and Redox Speciation of Plutonium at the Illite Surface. Environmental Science & Technology, 2016, 50, 2092-2098.	10.0	29
18	First structural characterization of Pa(<scp>iv</scp>) in aqueous solution and quantum chemical investigations of the tetravalent actinides up to Bk(<scp>iv</scp>): the evidence of a curium break. Dalton Transactions, 2016, 45, 453-457.	3.3	28

Rémi Marsac

#	Article	IF	CITATIONS
19	Treatment of multi-dentate surface complexes and diffuse layer implementation in various speciation codes. Applied Geochemistry, 2015, 55, 128-137.	3.0	27
20	Montmorillonite colloids: I. Characterization and stability of dispersions with different size fractions. Applied Clay Science, 2015, 114, 179-189.	5.2	26
21	Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants. Environmental Science & Technology, 2018, 52, 467-473.	10.0	26
22	Adsorption of Quinolone Antibiotics to Goethite under Seawater Conditions: Application of a Surface Complexation Model. Environmental Science & Technology, 2019, 53, 1130-1138.	10.0	26
23	Co-Binding of Pharmaceutical Compounds at Mineral Surfaces: Molecular Investigations of Dimer Formation at Goethite/Water Interfaces. Environmental Science & Technology, 2017, 51, 8343-8349.	10.0	25
24	Cobinding of Pharmaceutical Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic Acid and Niflumic Acid at Goethite Surfaces. Environmental Science & Technology, 2017, 51, 11617-11624.	10.0	24
25	Modeling plutonium sorption to kaolinite: Accounting for redox equilibria and the stability of surface species. Chemical Geology, 2015, 400, 1-10.	3.3	23
26	Impact of long-term storage of various redox-sensitive supported nanocomposites on their application in removal of dyes from wastewater: Mechanisms delineation through spectroscopic investigations. Journal of Hazardous Materials, 2021, 401, 123375.	12.4	20
27	Modeling rare earth elements binding to humic acids with model VII. Chemical Geology, 2021, 567, 120099.	3.3	20
28	Montmorillonite colloids: II. Colloidal size dependency on radionuclide adsorption. Applied Clay Science, 2016, 123, 292-303.	5.2	19
29	Modeling metal ion-humic substances complexation in highly saline conditions. Applied Geochemistry, 2017, 79, 52-64.	3.0	19
30	Stabilization of polynuclear plutonium(IV) species by humic acid. Geochimica Et Cosmochimica Acta, 2014, 131, 290-300.	3.9	18
31	Iron speciation in iron–organic matter nanoaggregates: a kinetic approach coupling Quick-EXAFS and MCR-ALS chemometrics. Environmental Science: Nano, 2019, 6, 2641-2651.	4.3	18
32	Bacteria-mediated reduction of As(V)-doped lepidocrocite in a flooded soil sample. Chemical Geology, 2015, 406, 34-44.	3.3	17
33	Measuring dissolved organic matter in estuarine and marine waters: size-exclusion chromatography with various detection methods. Environmental Chemistry, 2018, 15, 436.	1.5	17
34	Structure and spectroscopy of hydrated neptunyl(vi) nitrate complexes. Dalton Transactions, 2013, 42, 15275.	3.3	16
35	Sorption and redox speciation of plutonium at the illite surface under highly saline conditions. Journal of Colloid and Interface Science, 2017, 485, 59-64.	9.4	15
36	Reduction Kinetics of Nitroaromatic Compounds by Titanium-Substituted Magnetite. Journal of Physical Chemistry C, 2017, 121, 11399-11406.	3.1	13

Rémi Marsac

#	Article	IF	CITATIONS
37	Effect of organic compounds on the retention of radionuclides in clay rocks: Mechanisms and specificities of Eu(III), Th(IV), and U(VI). Applied Geochemistry, 2021, 127, 104859.	3.0	13
38	Implications of speciation on rare earth element toxicity: A focus on organic matter influence in Daphnia magna standard test. Environmental Pollution, 2022, 307, 119554.	7.5	13
39	Effects of organic matter–goethite interactions on reactive transport of nalidixic acid: Column study and modeling. Environmental Research, 2020, 191, 110187.	7.5	11
40	Silicate surface coverage controls quinolone transport in saturated porous media. Journal of Colloid and Interface Science, 2022, 607, 347-356.	9.4	11
41	Influence of pH on the release of colloidal and dissolved organic matter from vertical flow constructed wetland surface sludge deposits. Chemical Engineering Journal, 2021, 418, 129353.	12.7	9
42	Effect of loading on the nature of the REE–humate complexes as determined by Yb3+ and Sm3+ LIII-edge EXAFS analysis. Chemical Geology, 2015, 396, 218-227.	3.3	8
43	Np(v) complexation with propionate in 0.5–4 M NaCl solutions at 20–85 °C. Dalton Transactions, 2015, 44, 3837-3844.	3.3	8
44	Neptunium sorption and redox speciation at the illite surface under highly saline conditions. Geochimica Et Cosmochimica Acta, 2017, 215, 421-431.	3.9	8
45	Probing the effects of redox conditions and dissolved Fe2+ on nanomagnetite stoichiometry by wet chemistry, XRD, XAS and XMCD. Environmental Science: Nano, 2021, 8, 2098-2107.	4.3	8
46	Interactions of Anti-Inflammatory and Antibiotic Drugs at Mineral Surfaces Can Control Environmental Fate and Transport. Environmental Science & Technology, 2022, 56, 2378-2385.	10.0	8
47	Tc interaction with crystalline rock from Äspö (Sweden): Effect of in-situ rock redox capacity. Applied Geochemistry, 2017, 80, 90-101.	3.0	7
48	Prediction of nanomagnetite stoichiometry (Fe(II)/Fe(III)) under contrasting pH and redox conditions. Environmental Science: Nano, 0, , .	4.3	7
49	Adsorption capacity of the corrosion products of nanoscale zerovalent iron for emerging contaminants. Environmental Science: Nano, 2020, 7, 3773-3782.	4.3	6
50	More than redox, biological organic ligands control iron isotope fractionation in the riparian wetland. Scientific Reports, 2021, 11, 1933.	3.3	5
51	Competitive Carboxylate–Silicate Binding at Iron Oxyhydroxide Surfaces. Langmuir, 2021, 37, 13107-13115.	3.5	5
52	Response of sediment phosphorus partitioning to lanthanum-modified clay amendment and porewater chemistry in a small eutrophic lake. Environmental Sciences: Processes and Impacts, 2022, 24, 1494-1507.	3.5	5
53	XANES characterization of UO ₂ /Mo(Pd) thin films as models for ïµ-particles in spent nuclear fuel. Journal of Physics: Conference Series, 2013, 430, 012113.	0.4	4
54	The Effect of Monovalent Electrolytes on the Deprotonation of MAl12 Keggin Ions. Aquatic Geochemistry, 2015, 21, 81-97.	1.3	4

#	Article	IF	CITATIONS
55	Absolute and Relative Positioning of Natural Organic Matter Acid–Base Potentiometric Titration Curves: Implications for the Evaluation of the Density of Charged Reactive Sites. Environmental Science & Technology, 2022, 56, 10494-10503.	10.0	4
56	Metals binding processes on Nanoplastics : Rare earth elements as a probe. Environmental Science: Nano, 0, , .	4.3	2
57	An easy spectrophotometric acid-base titration protocol for dissolved organic matter. MethodsX, 2022, 9, 101721.	1.6	2
58	Determination of complex formation constants of neptunium(V) with propionate and lactate in 0.5–2.6 m NaCl solutions at 22–60°C using a solvent extraction technique. Radiochimica Acta, 2019, 107, 623-634.	1.2	1