
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3911591/publications.pdf Version: 2024-02-01



YASUSHI SONEDA

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Nitrogen-doped carbon materials. Carbon, 2018, 132, 104-140.                                                                                                                                                                     | 10.3 | 566       |
| 2  | Supercapacitors Prepared from Melamine-Based Carbon. Chemistry of Materials, 2005, 17, 1241-1247.                                                                                                                                | 6.7  | 486       |
| 3  | The effects of the surface oxidation of activated carbon, the solution pH and the temperature on adsorption of ibuprofen. Carbon, 2013, 54, 432-443.                                                                             | 10.3 | 215       |
| 4  | Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors. Carbon, 2006, 44, 2360-2367.                                                                             | 10.3 | 213       |
| 5  | Templated mesoporous carbons: Synthesis and applications. Carbon, 2016, 107, 448-473.                                                                                                                                            | 10.3 | 208       |
| 6  | Melamine-derived carbon sponges for oil-water separation. Carbon, 2016, 107, 198-208.                                                                                                                                            | 10.3 | 199       |
| 7  | Adsorptive hydrogen storage in carbon and porous materials. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 2004, 108, 143-147.                                                           | 3.5  | 154       |
| 8  | Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon, 2007, 45, 1105-1107.                                                                                                                          | 10.3 | 147       |
| 9  | Adsorption of ibuprofen from aqueous solution on chemically surface-modified activated carbon cloths. Arabian Journal of Chemistry, 2017, 10, S3584-S3594.                                                                       | 4.9  | 120       |
| 10 | Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Metal and<br>Polytetrafluoroethylene. Electrochemical and Solid-State Letters, 2001, 4, A5.                                                       | 2.2  | 104       |
| 11 | Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor.<br>Electrochimica Acta, 2007, 52, 2478-2484.                                                                                          | 5.2  | 94        |
| 12 | Structural characterization and electric double layer capacitance of template carbons. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 2004, 108, 156-161.                                | 3.5  | 72        |
| 13 | Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO. Carbon, 2002, 40, 965-969.                                                           | 10.3 | 61        |
| 14 | Huge electrochemical capacitance of exfoliated carbon fibers. Carbon, 2003, 41, 2680-2682.                                                                                                                                       | 10.3 | 54        |
| 15 | Structure and electrochemical properties of carbon aerogels polymerized in the presence of Cu2+.<br>Journal of Non-Crystalline Solids, 2003, 330, 99-105.                                                                        | 3.1  | 50        |
| 16 | Preparation and electrochemical performance of activated carbon thin films with polyethylene<br>oxide-salt addition for electrochemical capacitor applications. Journal of Solid State<br>Electrochemistry, 2008, 12, 1349-1355. | 2.5  | 50        |
| 17 | Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte. Carbon, 2004, 42, 2833-2837.                                                                                     | 10.3 | 47        |
| 18 | Advanced carbon electrode for electrochemical capacitors. Journal of Solid State Electrochemistry, 2019, 23, 1061-1081.                                                                                                          | 2.5  | 43        |

| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structure and Electrochemical Capacitance of Nitrogen-enriched Mesoporous Carbon. Chemistry Letters, 2006, 35, 680-681.                                                                                                 | 1.3  | 39        |
| 20 | Electrochemical behavior of exfoliated carbon fibers in H2SO4 electrolyte with different concentrations. Journal of Physics and Chemistry of Solids, 2004, 65, 219-222.                                                 | 4.0  | 35        |
| 21 | Highly enhanced capacitance of MgO-templated mesoporous carbons in low temperature ionic liquids.<br>Journal of Power Sources, 2014, 271, 377-381.                                                                      | 7.8  | 35        |
| 22 | Low-temperature preparation and electrochemical capacitance of WC/carbon composites with high specific surface area. Carbon, 2007, 45, 2759-2767.                                                                       | 10.3 | 27        |
| 23 | Contribution of mesopores in MgO-templated mesoporous carbons to capacitance in non-aqueous electrolytes. Journal of Power Sources, 2015, 276, 176-180.                                                                 | 7.8  | 23        |
| 24 | Correlation between the pore structure and electrode density of MgO-templated carbons for electric double layer capacitor applications. Journal of Power Sources, 2016, 305, 128-133.                                   | 7.8  | 23        |
| 25 | Effects of Nitric Acid and Heat Treatment on Hydrogen Adsorption of Single-Walled Carbon<br>Nanotubes. Australian Journal of Chemistry, 2007, 60, 519.                                                                  | 0.9  | 22        |
| 26 | Effectiveness of the dispersion of iron nanoparticles within micropores and mesopores of activated carbon for Rhodamine B removal in wastewater by the heterogeneous Fenton process. Applied Water Science, 2019, 9, 1. | 5.6  | 22        |
| 27 | Optimization of the reaction conditions for Fe-catalyzed decomposition of methane and characterization of the produced nanocarbon fibers. Catalysis Today, 2019, 332, 11-19.                                            | 4.4  | 22        |
| 28 | Formation and texture of carbon nanofilaments by the catalytic decomposition of CO on stainless-steel plate. Carbon, 2000, 38, 478-480.                                                                                 | 10.3 | 20        |
| 29 | Pseudo-capacitance on exfoliated carbon fiber in sulfuric acid electrolyte. Applied Physics A:<br>Materials Science and Processing, 2006, 82, 575-578.                                                                  | 2.3  | 17        |
| 30 | MgO-templated carbon as a negative electrode material for Na-ion capacitors. Journal of Physics and<br>Chemistry of Solids, 2016, 99, 167-172.                                                                          | 4.0  | 17        |
| 31 | Development and degradation of graphitic microtexture in carbon nanospheres under a morphologically restrained condition. Materials Chemistry and Physics, 2010, 121, 419-424.                                          | 4.0  | 16        |
| 32 | Preparation of intercalation compounds of carbon fibers through electrolysis using phosphoric acid electrolyte and their exfoliation. Journal of Physics and Chemistry of Solids, 2006, 67, 1178-1181.                  | 4.0  | 14        |
| 33 | The effect of acid treatment of coal on H2S evolution during pyrolysis in hydrogen. Fuel, 1998, 77, 907-911.                                                                                                            | 6.4  | 13        |
| 34 | Phase transition in porous electrodes. III. For the case of a two component electrolyte. Journal of<br>Chemical Physics, 2013, 138, 234704.                                                                             | 3.0  | 13        |
| 35 | Excellent Rate Capability of MgO-Templated Mesoporous Carbon as an Na-Ion Energy Storage Material.<br>ECS Electrochemistry Letters, 2014, 4, A22-A23.                                                                   | 1.9  | 13        |
| 36 | Preparation of porous carbons by templating method using Mg hydroxide for supercapacitors.<br>Microporous and Mesoporous Materials, 2019, 287, 101-106.                                                                 | 4.4  | 13        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electronic properties and structure of stage-4 MoCl5 GICs prepared from highly crystallized graphite films. Synthetic Metals, 1995, 73, 49-54.                                                                                                              | 3.9 | 12        |
| 38 | Effect of Mesopore in MgO Templated Mesoporous Carbon Electrode on Capacitor Performance.<br>Electrochemistry, 2013, 81, 845-848.                                                                                                                           | 1.4 | 12        |
| 39 | Preparation and characterization of molybdenum carbides/carbon composites with high specific surface area. Materials Letters, 2008, 62, 2766-2768.                                                                                                          | 2.6 | 11        |
| 40 | Conditions for the Formation of a New Type of Graphite Intercalation Compounds with FeCl3 in Chloroform. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 1992, 610, 157-162.                                                                            | 1.2 | 10        |
| 41 | Capacitor performance of MgO-templated carbons synthesized using hydrothermally treated MgO particles. Microporous and Mesoporous Materials, 2021, 310, 110646.                                                                                             | 4.4 | 10        |
| 42 | Effect of coexistence of siloxane on production of hydrogen and nanocarbon by methane<br>decomposition using Fe catalyst. International Journal of Hydrogen Energy, 2021, 46, 11556-11563.                                                                  | 7.1 | 10        |
| 43 | Preparation of air-stable and highly conductive potassium-intercalated graphite sheet. Journal of<br>Physics and Chemistry of Solids, 2013, 74, 1482-1486.                                                                                                  | 4.0 | 9         |
| 44 | Void-bearing electrodes with microporous activated carbon for electric double-layer capacitors.<br>Journal of Electroanalytical Chemistry, 2019, 833, 33-38.                                                                                                | 3.8 | 9         |
| 45 | A Novel Carbothermal Method for the Preparation of Nano-sized WC on High Surface Area Carbon.<br>Chemistry Letters, 2006, 35, 1148-1149.                                                                                                                    | 1.3 | 8         |
| 46 | Carbons for Supercapacitors. , 2013, , 211-222.                                                                                                                                                                                                             |     | 8         |
| 47 | Durability of mesoporous carbon electrodes in electric double layer capacitors with organic electrolytes. Tanso, 2017, 2017, 182-187.                                                                                                                       | 0.1 | 8         |
| 48 | Optimization by Using Response Surface Methodology of the Preparation from Plantain Spike of a<br>Micro-/Mesoporous Activated Carbon Designed for Removal of Dyes in Aqueous Solution. Arabian<br>Journal for Science and Engineering, 2020, 45, 7231-7245. | 3.0 | 8         |
| 49 | Formation and stability of new FeCl3-graphite intercalation compounds. Solid State Ionics, 1993, 63-65, 523-527.                                                                                                                                            | 2.7 | 7         |
| 50 | Optimization of total organic carbon removal of a real dyeing wastewater by heterogeneous Fenton using response surface methodology. , 0, 136, 186-198.                                                                                                     |     | 7         |
| 51 | Electrochemical behavior of MgO-templated mesoporous carbons in the propylene carbonate solution of sodium hexafluorophosphate. Journal of Applied Electrochemistry, 2015, 45, 273-280.                                                                     | 2.9 | 6         |
| 52 | Host Effect on the Properties of AM-GICs. Molecular Crystals and Liquid Crystals, 2000, 340, 59-64.                                                                                                                                                         | 0.3 | 5         |
| 53 | Enhanced Durability of Porous Carbon/Single-Walled Carbon Nanotube Composite Electrodes for Supercapacitors. Journal of the Electrochemical Society, 2016, 163, A1753-A1758.                                                                                | 2.9 | 5         |
| 54 | Pulverized Graphite by Ball Milling for Electric Double-Layer Capacitors. Journal of the Electrochemical Society, 2019, 166, A2471-A2476.                                                                                                                   | 2.9 | 5         |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synthesis and characterization of Cu doped activated carbon beads from chitosan. Microporous and<br>Mesoporous Materials, 2021, 322, 111147.                                          | 4.4  | 5         |
| 56 | Room temprature exfoliation of graphite microgravity. Carbon, 1993, 31, 1349-1350.                                                                                                    | 10.3 | 4         |
| 57 | Doping of Bromine into Carbon Materials with Different Heat-Treatment Temperatures Journal of the<br>Ceramic Society of Japan, 2003, 111, 42-46.                                      | 1.3  | 4         |
| 58 | Stabilization of poly(vinyl chloride) using iodine vapor for preparing carbon aerogels. Journal of<br>Materials Science, 2004, 39, 1463-1466.                                         | 3.7  | 3         |
| 59 | TEM and Electron Tomography Imaging of Pt Particles Dispersed on Carbon Nanospheres. Journal of<br>Nano Research, 2010, 11, 119-124.                                                  | 0.8  | 3         |
| 60 | Galvanomagnetic properties of air-stable and highly conductive potassium-intercalated graphite sheet. Journal of Physics and Chemistry of Solids, 2013, 74, 1875-1878.                | 4.0  | 3         |
| 61 | Electric Double Layer Capacitors made by Exfoliated Carbon Fibers. Tanso, 2003, 2003, 225-230.                                                                                        | 0.1  | 3         |
| 62 | Mechanochemical Processing of Natural Graphite under Different Atmospheres for Fabricating<br>Electrodes Used in Electric Double-layer Capacitors. Electrochemistry, 2020, 88, 94-98. | 1.4  | 3         |
| 63 | Direct Current Generation from NADH and <scp>l</scp> -Cysteine Using Carbon Fiber: Possible Uses in<br>Biofuel Cells. Bulletin of the Chemical Society of Japan, 2011, 84, 544-551.   | 3.2  | 2         |
| 64 | Application of Alkali Metal-Doped Carbons for Hydrogen Recovery and Isotope Separation. Journal of<br>Nanoscience and Nanotechnology, 2011, 11, 9046-9049.                            | 0.9  | 1         |
| 65 | Ferroelectric Phase Behaviors in Porous Electrodes. Langmuir, 2017, 33, 11574-11581.                                                                                                  | 3.5  | 1         |
| 66 | Capacitor devices for rapid charge/discharge storage. Synthesiology, 2013, 6, 222-231.                                                                                                | 0.2  | 1         |
| 67 | āfŠāfŽā,«āf¼āfœāf³ā«ā,ˆā,‹æ°´ç´è²⁻è"μ. Electrochemistry, 2003, 71, 883-887.                                                                                                           | 1.4  | 1         |
| 68 | Ultrasonic pre-treatment of an activated carbon powder in different solutions and influence on the ibuprofen adsorption. , 2020, 23, 17-31.                                           |      | 1         |
| 69 | Synthesis of carbon nanofibers. Tanso, 2009, 2009, 72-76.                                                                                                                             | 0.1  | 1         |
| 70 | Nanocarbons for electrochemical capacitor electrode materials. Tanso, 2019, 2019, 59-66.                                                                                              | 0.1  | 1         |
| 71 | Characterization of CsC24 prepared from carbon materials with different graphitization degree.<br>Synthetic Metals, 2001, 125, 147-151.                                               | 3.9  | 0         |
| 72 | Current Generation from Na2SO3 and H2SO3 by Using Carbon Fiber Anode. Bulletin of the Chemical<br>Society of Japan, 2012, 85, 923-929.                                                | 3.2  | 0         |

| #  | Article                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Synthesis of highly-crystalline graphite films from organic polymer films. , 2022, 1, 2-21.                                                     |     | ο         |
| 74 | Potentialities of a mesoporous activated carbon as virus detection probe in aquatic systems. Journal of Virological Methods, 2022, 303, 114496. | 2.1 | 0         |