Cliff I Stains

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3911349/publications.pdf

Version: 2024-02-01

430874 377865 1,162 44 18 34 citations h-index g-index papers 44 44 44 1321 citing authors all docs docs citations times ranked

#	Article	lF	Citations
1	Heteroatomâ€Substituted Xanthene Fluorophores Enter the Shortwaveâ€Infrared Region ^{â€} . Photochemistry and Photobiology, 2022, 98, 400-403.	2.5	4
2	Identification of fluoxetine as a direct NLRP3 inhibitor to treat atrophic macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	41
3	An Evolutionary Strategy for Identification of Higher Order, Green Fluorescent Host–Guest Pairs Compatible with Living Systems. Chemistry - A European Journal, 2020, 26, 16721-16726.	3.3	O
4	A fluorescent probe for monitoring PTP-PEST enzymatic activity. Analyst, The, 2020, 145, 6713-6718.	3.5	3
5	A Luminescence-Based System for Identification of Genetically Encodable Inhibitors of Protein Aggregation. ACS Omega, 2020, 5, 12974-12978.	3.5	2
6	Synthesis and application of a ratiometric probe for hydrogen peroxide. Methods in Enzymology, 2020, 639, 23-36.	1.0	2
7	Imaging GPCR internalization using near-infrared Nebraska red-based reagents. Organic and Biomolecular Chemistry, 2020, 18, 2459-2467.	2.8	13
8	A luminescence-based assay for monitoring changes in alpha-synuclein aggregation in living cells. RSC Advances, 2020, 10, 16675-16678.	3.6	3
9	A Panel of Protein Kinase Chemosensors Distinguishes Different Types of Fatty Liver Disease. Biochemistry, 2019, 58, 3911-3917.	2.5	3
10	Utilizing split-NanoLuc luciferase fragments as luminescent probes for protein solubility in living cells. Methods in Enzymology, 2019, 622, 55-66.	1.0	7
11	Phosphinate-containing rhodol and fluorescein scaffolds for the development of bioprobes. Chemical Communications, 2019, 55, 5962-5965.	4.1	30
12	Design and synthesis of fluorescent activity probes for protein phosphatases. Methods in Enzymology, 2019, 622, 29-53.	1.0	2
13	A Phosphinateâ€Containing Fluorophore Capable of Selectively Inducing Apoptosis in Cancer Cells. ChemBioChem, 2019, 20, 1712-1716.	2.6	11
14	Interrogating Protein Phosphatases with Chemical Activity Probes. Chemistry - A European Journal, 2018, 24, 7810-7824.	3.3	14
15	Frontispiece: Interrogating Protein Phosphatases with Chemical Activity Probes. Chemistry - A European Journal, 2018, 24, .	3.3	0
16	Chemoselective Alteration of Fluorophore Scaffolds as a Strategy for the Development of Ratiometric Chemodosimeters. Angewandte Chemie - International Edition, 2017, 56, 4197-4200.	13.8	51
17	Chemoselective Alteration of Fluorophore Scaffolds as a Strategy for the Development of Ratiometric Chemodosimeters. Angewandte Chemie, 2017, 129, 4261-4264.	2.0	8
18	Identification of a fragmented small GTPase capable of conditional effector binding. RSC Advances, 2017, 7, 12265-12268.	3.6	2

#	Article	IF	CITATIONS
19	Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors. Methods in Molecular Biology, 2017, 1636, 61-70.	0.9	2
20	Nebraska Red: a phosphinate-based near-infrared fluorophore scaffold for chemical biology applications. Chemical Communications, 2016, 52, 12290-12293.	4.1	112
21	Luminescent platforms for monitoring changes in the solubility of amylin and huntingtin in living cells. Molecular BioSystems, 2016, 12, 2984-2987.	2.9	4
22	Temporal Analysis of PP2A Phosphatase Activity During Insulin Stimulation Using a Direct Activity Probe. ACS Chemical Biology, 2016, 11, 3284-3288.	3.4	11
23	Interrogating Endogenous Protein Phosphatase Activity with Rationally Designed Chemosensors. ACS Chemical Biology, 2016, 11, 284-290.	3.4	27
24	An improved miniprotein host for fluorogenic supramolecular assembly on the surface of living cells. RSC Advances, 2016, 6, 20381-20385.	3.6	2
25	Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells. ACS Chemical Biology, 2016, 11, 132-138.	3.4	45
26	The 8-Silyloxyquinoline Scaffold as a Versatile Platform for the Sensitive Detection of Aqueous Fluoride. Analytical Chemistry, 2015, 87, 4081-4086.	6.5	36
27	Design and evaluation of a real-time activity probe for focal adhesion kinase. Analytica Chimica Acta, 2015, 897, 62-68.	5.4	10
28	A real-time, fluorescence-based assay for Rho-associated protein kinase activity. Analytica Chimica Acta, 2015, 891, 284-290.	5.4	12
29	Supramolecular Assembly of an Evolved Miniprotein Host and Fluorogenic Guest Pair. Journal of the American Chemical Society, 2015, 137, 14252-14255.	13.7	4
30	Design, synthesis, and evaluation of a selective chemosensor for leucine-rich repeat kinase 2. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5648-5651.	2.2	7
31	Quantification of Protein Kinase Enzymatic Activity in Unfractionated Cell Lysates Using CSoxâ€Based Sensors. Current Protocols in Chemical Biology, 2014, 6, 135-156.	1.7	14
32	Interrogating Signaling Nodes Involved in Cellular Transformations Using Kinase Activity Probes. Chemistry and Biology, 2012, 19, 210-217.	6.0	35
33	A p38α-Selective Chemosensor for use in Unfractionated Cell Lysates. ACS Chemical Biology, 2011, 6, 101-105.	3.4	32
34	Toward a General Approach for RNA-Templated Hierarchical Assembly of Split-Proteins. Journal of the American Chemical Society, 2010, 132, 11692-11701.	13.7	39
35	A General Approach for Receptor and Antibody-Targeted Detection of Native Proteins Utilizing Split-Luciferase Reassembly. ACS Chemical Biology, 2010, 5, 943-952.	3.4	29
36	Systematic evaluation of split-fluorescent proteins for the direct detection of native and methylated DNA. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 3748-3751.	2.2	10

CLIFF | STAINS

#	Article	IF	CITATION
37	A General and Rapid Cell-Free Approach for the Interrogation of Proteinâ^'Protein, Proteinâ^'DNA, and Proteinâ^'RNA Interactions and their Antagonists Utilizing Split-Protein Reporters. Journal of the American Chemical Society, 2008, 130, 6488-6497.	13.7	65
38	Split \hat{l}^2 -Lactamase Sensor for the Sequence-Specific Detection of DNA Methylation. Analytical Chemistry, 2007, 79, 6702-6708.	6.5	53
39	When Conjugated Polymers Meet Amyloid Fibrils. ACS Chemical Biology, 2007, 2, 525-528.	3.4	6
40	Molecules that Target betaâ€Amyloid. ChemMedChem, 2007, 2, 1674-1692.	3.2	106
41	Direct detection of double-stranded DNA: molecular methods and applications for DNA diagnostics. Molecular BioSystems, 2006, 2, 551.	2.9	95
42	Site-Specific Detection of DNA Methylation Utilizing mCpG-SEER. Journal of the American Chemical Society, 2006, 128, 9761-9765.	13.7	78
43	Inhibition of \hat{I}^2 -Amyloid Fibrillization by Directed Evolution of a \hat{I}^2 -Sheet Presenting Miniature Protein. Journal of the American Chemical Society, 2006, 128, 14456-14457.	13.7	45
44	DNA Sequence-Enabled Reassembly of the Green Fluorescent Protein. Journal of the American Chemical Society, 2005, 127, 10782-10783.	13.7	87