List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3911319/publications.pdf Version: 2024-02-01

LOSÃO M ERANCO

#	Article	IF	CITATIONS
1	Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Research, 2013, 2, 164-173.	2.4	323
2	Viscosity modification of different vegetable oils with EVA copolymer for lubricant applications. Industrial Crops and Products, 2010, 32, 607-612.	2.5	167
3	Antiulcer Effect of Naringin on Gastric Lesions Induced by Ethanol in Rats. Pharmacology, 1994, 49, 144-150.	0.9	131
4	The Importance of Understanding the Freezing Step and Its Impact on Freeze-Drying Process Performance. Journal of Pharmaceutical Sciences, 2019, 108, 1378-1395.	1.6	118
5	Influence of Soap Concentration and Oil Viscosity on the Rheology and Microstructure of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 1902-1910.	1.8	112
6	Rheology of food, cosmetics and pharmaceuticals. Current Opinion in Colloid and Interface Science, 1999, 4, 288-293.	3.4	109
7	Low-temperature flow behaviour of vegetable oil-based lubricants. Industrial Crops and Products, 2012, 37, 383-388.	2.5	100
8	A Review of the Sustainable Approaches in the Production of Bio-based Polyurethanes and Their Applications in the Adhesive Field. Journal of Polymers and the Environment, 2020, 28, 749-774.	2.4	98
9	Thermorheological behaviour of a lithium lubricating grease. Tribology Letters, 2006, 23, 47-54.	1.2	92
10	Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydrate Polymers, 2011, 85, 705-714.	5.1	86
11	Relationship Among Microstructure, Rheology and Processing of a Lithium Lubricating Grease. Chemical Engineering Research and Design, 2005, 83, 1085-1092.	2.7	85
12	Atomic Force Microscopy and Thermo-Rheological Characterisation of Lubricating Greases. Tribology Letters, 2011, 41, 463-470.	1.2	78
13	Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: Influence of ethyl cellulose molecular weight. Carbohydrate Polymers, 2011, 83, 151-158.	5.1	76
14	Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green Chemistry, 2009, 11, 686.	4.6	74
15	Rheology and processing of salad dressing emulsions. Rheologica Acta, 1995, 34, 513-524.	1.1	73
16	3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocolloids, 2019, 87, 321-330.	5.6	72
17	Influence of Processing Variables on the Rheological and Textural Properties of Lupin Protein-Stabilized Emulsions. Journal of Agricultural and Food Chemistry, 1998, 46, 3109-3115.	2.4	71
18	Mixing rheometry for studying the manufacture of lubricating greases. Chemical Engineering Science, 2005, 60, 2409-2418.	1.9	71

#	Article	IF	CITATIONS
19	Viscosity Modification of High-Oleic Sunflower Oil with Polymeric Additives for the Design of New Biolubricant Formulations. Environmental Science & Technology, 2009, 43, 2060-2065.	4.6	71
20	Rheology of new green lubricating grease formulations containing cellulose pulp and its methylated derivative as thickener agents. Industrial Crops and Products, 2012, 37, 500-507.	2.5	69
21	On slip effects in steady-state flow measurements of oil-in-water food emulsions. Journal of Food Engineering, 1998, 36, 89-102.	2.7	65
22	Natural and Synthetic Antioxidant Additives for Improving the Performance of New Biolubricant Formulations. Journal of Agricultural and Food Chemistry, 2011, 59, 12917-12924.	2.4	62
23	Linear Viscoelasticity of Salad Dressing Emulsions. Journal of Agricultural and Food Chemistry, 1997, 45, 713-719.	2.4	61
24	Flow behaviour and stability of light mayonnaise containing a mixture of egg yolk and sucrose stearate as emulsifiers. Food Hydrocolloids, 1995, 9, 111-121.	5.6	57
25	Preparation, Characterization and Mechanical Properties of Bio-Based Polyurethane Adhesives from Isocyanate-Functionalized Cellulose Acetate and Castor Oil for Bonding Wood. Polymers, 2017, 9, 132.	2.0	56
26	Influence of the Geometry on the Transient and Steady Flow of Lubricating Greases. Tribology Transactions, 2001, 44, 53-58.	1.1	55
27	Development of new lubricating grease formulations using recycled LDPE as rheology modifier additive. European Polymer Journal, 2007, 43, 139-149.	2.6	55
28	Novel foods with microalgal ingredients – Effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. Journal of Food Engineering, 2012, 110, 182-189.	2.7	54
29	Optimization of the composition of low-fat oil-in-water emulsions stabilized by white lupin protein. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 783-790.	0.8	53
30	Gel-Like Dispersions of HMDI-Cross-Linked Lignocellulosic Materials in Castor Oil: Toward Completely Renewable Lubricating Grease Formulations. ACS Sustainable Chemistry and Engineering, 2015, 3, 2130-2141.	3.2	51
31	Viscous, thermal and tribological characterization of oleic and ricinoleic acids-derived estolides and their blends with vegetable oils. Journal of Industrial and Engineering Chemistry, 2013, 19, 1289-1298.	2.9	50
32	LINEAR AND NONLINEAR VISCOELASTIC BEHAVIOR OF OIL-IN-WATER EMULSIONS STABILIZED WITH POLYSACCHARIDES. Journal of Texture Studies, 2002, 33, 215-236.	1.1	49
33	Linear and non-linear viscoelasticity of puddings for nutritional management of dysphagia. Food Hydrocolloids, 2011, 25, 586-593.	5.6	49
34	Influence of pH and protei thermal treatment on the rheology of pea protein-stabilized oil-in-water emulsions. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 975-984.	0.8	47
35	Modeling of the Non-Linear Rheological Behavior of a Lubricating Grease at Low-Shear Rates. Journal of Tribology, 2000, 122, 590-596.	1.0	46
36	Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydrate Polymers, 2013, 98, 152-160.	5.1	46

#	Article	IF	CITATIONS
37	Thickening properties of several NCO-functionalized cellulose derivatives in castor oil. Chemical Engineering Science, 2015, 134, 260-268.	1.9	44
38	Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell. Tribology International, 2016, 94, 652-660.	3.0	44
39	Synthesis and mechanical properties of bio-sourced polyurethane adhesives obtained from castor oil and MDI-modified cellulose acetate: Influence of cellulose acetate modification. International Journal of Adhesion and Adhesives, 2019, 95, 102404.	1.4	43
40	Formulation of new biodegradable lubricating greases using ethylated cellulose pulp as thickener agent. Journal of Industrial and Engineering Chemistry, 2011, 17, 818-823.	2.9	40
41	Experimental study of grease flow in pipelines: wall slip and air entrainment effects. Chemical Engineering and Processing: Process Intensification, 2005, 44, 805-817.	1.8	39
42	Effect of thermo-mechanical processing on the rheology of oleogels potentially applicable as biodegradable lubricating greases. Chemical Engineering Research and Design, 2008, 86, 1073-1082.	2.7	38
43	AFM and SEM Assessment of Lubricating Grease Microstructures: Influence of Sample Preparation Protocol, Frictional Working Conditions and Composition. Tribology Letters, 2016, 63, 1.	1.2	38
44	Wall Slip Phenomena in Oil-in-Water Emulsions: Effect of Some Structural Parameters. Journal of Colloid and Interface Science, 2001, 241, 226-232.	5.0	37
45	Microalgae biomass interaction in biopolymer gelled systems. Food Hydrocolloids, 2011, 25, 817-825.	5.6	37
46	Rheology of spray-dried egg yolk-stabilized emulsions. International Journal of Food Science and Technology, 2002, 37, 297-307.	1.3	36
47	Effect of rheological behaviour of lithium greases on the friction process. Industrial Lubrication and Tribology, 2008, 60, 37-45.	0.6	36
48	Influence of soap/polymer concentration ratio on the rheological properties of lithium lubricating greases modified with virgin LDPE. Journal of Industrial and Engineering Chemistry, 2009, 15, 687-693.	2.9	36
49	Rheological and Tribological Characterization of a New Acylated Chitosan–Based Biodegradable Lubricating Grease: A Comparative Study with Traditional Lithium and Calcium Greases. Tribology Transactions, 2014, 57, 445-454.	1.1	36
50	Rheology of lignin-based chemical oleogels prepared using diisocyanate crosslinkers: Effect of the diisocyanate and curing kinetics. European Polymer Journal, 2017, 89, 311-323.	2.6	36
51	Effect of thermal denaturation of lupin protein on its emulsifying properties. Molecular Nutrition and Food Research, 1998, 42, 220-224.	0.0	35
52	Effect of salt content on the rheological properties of salad dressing-type emulsions stabilized by emulsifier blends. Journal of Food Engineering, 2007, 80, 1272-1281.	2.7	35
53	Isocyanate-Functionalized Chitin and Chitosan as Gelling Agents of Castor Oil. Molecules, 2013, 18, 6532-6549.	1.7	34
54	Molecular insights into the mechanisms of humidity-induced changes on the bulk performance of model castor oil derived polyurethane adhesives. European Polymer Journal, 2018, 101, 291-303.	2.6	34

#	Article	IF	CITATIONS
55	Rheological properties of oil-in-water emulsions prepared with oil and protein isolates from sesame (Sesamum Indicum). Food Science and Technology, 2016, 36, 64-69.	0.8	33
56	Evaluation of different polyolefins as rheology modifier additives in lubricating grease formulations. Materials Chemistry and Physics, 2011, 128, 530-538.	2.0	32
57	Valorization of Soda Lignin from Wheat Straw Solid-State Fermentation: Production of Oleogels. ACS Sustainable Chemistry and Engineering, 2018, 6, 5198-5205.	3.2	32
58	Rheological Modification of Lubricating Greases with Recycled Polymers from Different Plastics Waste. Industrial & Engineering Chemistry Research, 2009, 48, 4136-4144.	1.8	31
59	Chemical modification of methyl cellulose with HMDI to modulate the thickening properties in castor oil. Cellulose, 2013, 20, 495-507.	2.4	31
60	Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: Influence of cellulosic derivatives concentration ratio. Journal of Industrial and Engineering Chemistry, 2011, 17, 705-711.	2.9	30
61	Evaluation of lignin-enriched side-streams from different biomass conversion processes as thickeners in bio-lubricant formulations. International Journal of Biological Macromolecules, 2020, 162, 1398-1413.	3.6	30
62	Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas Y Aceites, 2011, 62, 328-336.	0.3	29
63	Assessing the rheological properties and adhesion performance on different substrates of a novel green polyurethane based on castor oil and cellulose acetate: A comparison with commercial adhesives. International Journal of Adhesion and Adhesives, 2018, 82, 21-26.	1.4	29
64	Electrospun lignin-PVP nanofibers and their ability for structuring oil. International Journal of Biological Macromolecules, 2021, 180, 212-221.	3.6	29
65	Oleins as a source of estolides for biolubricant applications. Grasas Y Aceites, 2010, 61, 171-174.	0.3	28
66	Transient and Steady Flow of a Lamellar Liquid-Crystalline Surfactant/Water System. Langmuir, 1995, 11, 669-673.	1.6	27
67	Colored Food Emulsions—Implications of Pigment Addition on the Rheological Behavior and Microstructure. Food Biophysics, 2006, 1, 216-227.	1.4	27
68	Preparation and Characterization of Gel-like Dispersions Based on Cellulosic Pulps and Castor Oil for Lubricant Applications. Industrial & Engineering Chemistry Research, 2011, 50, 5618-5627.	1.8	27
69	Modification of Alkali Lignin with Poly(Ethylene Glycol) Diglycidyl Ether to Be Used as a Thickener in Bio-Lubricant Formulations. Polymers, 2018, 10, 670.	2.0	27
70	Thermo-rheological and tribological properties of novel bio-lubricating greases thickened with epoxidized lignocellulosic materials. Journal of Industrial and Engineering Chemistry, 2019, 80, 626-632.	2.9	27
71	Phosphogypsum waste lime as a promising substitute of commercial limes: A rheological approach. Cement and Concrete Composites, 2019, 95, 205-216.	4.6	27
72	Formulation of lubricating greases from renewable basestocks and thickener agents: A rheological approach. Industrial Crops and Products, 2014, 54, 115-121.	2.5	26

#	Article	IF	CITATIONS
73	Structure-property relationships in solvent free adhesives derived from castor oil. Industrial Crops and Products, 2018, 121, 90-98.	2.5	26
74	Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers, 2022, 14, 881.	2.0	26
75	Rheological properties of cholesterol-reduced, yolk-stabilized mayonnaise. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 837-843.	0.8	25
76	Linear viscoelasticity of tomato sauce products: influence of previous tomato paste processing. European Food Research and Technology, 2002, 214, 394-399.	1.6	25
77	On the drag reduction for the two-phase horizontal pipe flow of highly viscous non-Newtonian liquid/air mixtures: Case of lubricating grease. International Journal of Multiphase Flow, 2006, 32, 232-247.	1.6	24
78	Optimization of the Methylation Conditions of Kraft Cellulose Pulp for Its Use As a Thickener Agent in Biodegradable Lubricating Greases. Industrial & Engineering Chemistry Research, 2009, 48, 6765-6771.	1.8	24
79	Influence of Functionalization Degree on the Rheological Properties of Isocyanate-Functionalized Chitin- and Chitosan-Based Chemical Oleogels for Lubricant Applications. Polymers, 2014, 6, 1929-1947.	2.0	24
80	Ethylene-vinyl acetate copolymer (EVA)/sunflower vegetable oil polymer gels: Influence of vinyl acetate content. Polymer Testing, 2014, 37, 78-85.	2.3	24
81	Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: Influence of acyl substituent and acylation protocol. Chemical Engineering Research and Design, 2015, 100, 170-178.	2.7	24
82	Freeze-drying: A relevant unit operation in the manufacture of foods, nutritional products, and pharmaceuticals. Advances in Food and Nutrition Research, 2020, 93, 1-58.	1.5	23
83	Influence of molecular weight and free NCO content on the rheological properties of lithium lubricating greases modified with NCO-terminated prepolymers. European Polymer Journal, 2008, 44, 2262-2274.	2.6	22
84	Toward UV-Triggered Curing of Solvent-Free Polyurethane Adhesives Based on Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 11032-11040.	3.2	22
85	Chemical, thermal and viscous characterization of high-oleic sunflower and olive pomace acid oils and derived estolides. Grasas Y Aceites, 2013, 64, 497-508.	0.3	21
86	Effect of an alkali treatment on the development of cellulose pulp-based gel-like dispersions in vegetable oil for use as lubricants. Tribology International, 2018, 123, 329-336.	3.0	21
87	Valorization of Kraft Lignin as Thickener in Castor Oil for Lubricant Applications. Journal of Renewable Materials, 2018, 6, 347-361.	1.1	21
88	Green approach for the activation and functionalization of jute fibers through ball milling. Cellulose, 2020, 27, 643-656.	2.4	21
89	Rheological characterisation of salad-dressing-type emulsions stabilised by egg yolk/sucrose distearate blends. European Food Research and Technology, 2005, 220, 380-388.	1.6	20
90	Evaluation of Thermal and Rheological Properties of Lubricating Greases Modified with Recycled LDPE. Tribology Transactions, 2012, 55, 518-528.	1.1	20

#	Article	IF	CITATIONS
91	Influence of Eucalyptus globulus Kraft Pulping Severity on the Rheological Properties of Gel-like Cellulose Pulp Dispersions in Castor Oil. Industrial & Engineering Chemistry Research, 2012, 51, 9777-9782.	1.8	20
92	Effect of amorphous/recycled polypropylene ratio on thermo-mechanical properties of blends for lubricant applications. Polymer Testing, 2013, 32, 516-524.	2.3	20
93	Influence of polymer reprocessing cycles on the microstructure and rheological behavior of polypropylene/mineral oil oleogels. Polymer Testing, 2015, 45, 12-19.	2.3	20
94	Transient shear flow of model lithium lubricating greases. Mechanics of Time-Dependent Materials, 2009, 13, 63-80.	2.3	19
95	Formulation and processing of virgin and recycled polyolefin/oil blends for the development of lubricating greases. Journal of Industrial and Engineering Chemistry, 2013, 19, 580-588.	2.9	19
96	The use of rosemary extracts in vegetable oil-based lubricants. Industrial Crops and Products, 2014, 62, 474-480.	2.5	19
97	Rheology of epoxidized cellulose pulp gel-like dispersions in castor oil: Influence of epoxidation degree and the epoxide chemical structure. Carbohydrate Polymers, 2018, 199, 563-571.	5.1	19
98	Tribological study of epoxide-functionalized alkali lignin-based gel-like biogreases. Tribology International, 2020, 146, 106231.	3.0	19
99	Lignin effect in castor oil-based elastomers: Reaching new limits in rheological and cushioning behaviors. Composites Science and Technology, 2021, 203, 108602.	3.8	19
100	Enhancement of gel strength by application of thermal treatments in highly flocculated emulsions. Food Hydrocolloids, 2003, 17, 199-206.	5.6	18
101	Use of Reactive Diisocyanate-Terminated Polymers as Rheology Modifiers of Lubricating Greases. Industrial & Engineering Chemistry Research, 2006, 45, 4001-4010.	1.8	18
102	Rheology and microstructure of lithium lubricating greases modified with a reactive diisocyanate-terminated polymer: Influence of polymer addition protocol. Chemical Engineering and Processing: Process Intensification, 2008, 47, 528-538.	1.8	18
103	Tribological characterization of green lubricating greases formulated with castor oil and different biogenic thickener agents: a comparative experimental study. Industrial Lubrication and Tribology, 2011, 63, 446-452.	0.6	18
104	Viscosity modification of highâ€oleic sunflower and castor oils with acid oilsâ€derived estolides for lubricant applications. European Journal of Lipid Science and Technology, 2013, 115, 1173-1182.	1.0	18
105	Influence of epoxidation conditions on the rheological properties of gel-like dispersions of epoxidized kraft lignin in castor oil. Holzforschung, 2017, 71, 777-784.	0.9	18
106	Tunable rheological-tribological performance of "green―gel-like dispersions based on sepiolite and castor oil for lubricant applications. Applied Clay Science, 2020, 192, 105632.	2.6	18
107	Projectable tannin foams by mechanical and chemical expansion. Industrial Crops and Products, 2018, 120, 90-96.	2.5	17
108	Influence of solid-state fermentation with Streptomyces on the ability of wheat and barley straws to thicken castor oil for lubricating purposes. Industrial Crops and Products, 2019, 140, 111625.	2.5	17

#	Article	IF	CITATIONS
109	On the Steady-State Flow and Yielding Behaviour of Lubricating Greases. Fluids, 2019, 4, 6.	0.8	17
110	Rheology and adhesion performance of adhesives formulated with lignins from agricultural waste straws subjected to solid-state fermentation. Industrial Crops and Products, 2021, 171, 113876.	2.5	17
111	Droplet-size distribution and stability of lipid injectable emulsions. American Journal of Health-System Pharmacy, 2009, 66, 162-166.	0.5	16
112	Effect of the lupin protein/surfactant ratio on linear viscoelastic properties of oil-in-water emulsions. Journal of Surfactants and Detergents, 1999, 2, 545-551.	1.0	15
113	Recycled and virgin LDPE as rheology modifiers of lithium lubricating greases: A comparative study. Polymer Engineering and Science, 2008, 48, 1112-1119.	1.5	15
114	Rheology of Commercial and Model BorojÃ ³ Jam Formulations. International Journal of Food Properties, 2014, 17, 791-805.	1.3	15
115	Composition-property relationship of gel-like dispersions based on organo-bentonite, recycled polypropylene and mineral oil for lubricant purposes. Applied Clay Science, 2014, 87, 265-271.	2.6	15
116	An Experimental-Based Approach to Construct the Process Design Space of a Freeze-Drying Process: An Effective Tool to Design an Optimum and Robust Freeze-Drying Process for Pharmaceuticals. Journal of Pharmaceutical Sciences, 2020, 109, 785-796.	1.6	15
117	Electrohydrodynamic Processing of PVP-Doped Kraft Lignin Micro- and Nano-Structures and Application of Electrospun Nanofiber Templates to Produce Oleogels. Polymers, 2021, 13, 2206.	2.0	15
118	Impact of natural sources-derived antioxidants on the oxidative stability and rheological properties of castor oil based-lubricating greases. Industrial Crops and Products, 2016, 87, 297-303.	2.5	14
119	Tribological Investigation on the Friction and Wear Behaviors of Biogenic Lubricating Greases in Steel–Steel Contact. Applied Sciences (Switzerland), 2020, 10, 1477.	1.3	14
120	Implementation of a novel continuous solid/liquid mixing accessory for 3D printing of dysphagia-oriented thickened fluids. Food Hydrocolloids, 2021, 120, 106900.	5.6	14
121	A novel viscosity reducer for kraft process black liquors with a high dry solids content. Chemical Engineering and Processing: Process Intensification, 2007, 46, 193-197.	1.8	13
122	Impact of moisture curing conditions on the chemical structure and rheological and ultimate adhesion properties of polyurethane adhesives based on castor oil and cellulose acetate. Progress in Organic Coatings, 2021, 161, 106547.	1.9	13
123	Lignin-enriched residues from bioethanol production: Chemical characterization, isocyanate functionalization and oil structuring properties. International Journal of Biological Macromolecules, 2022, 195, 412-423.	3.6	13
124	Green and facile procedure for the preparation of liquid and gel-like polyurethanes based on castor oil and lignin: Effect of processing conditions on the rheological properties. Journal of Cleaner Production, 2020, 277, 123367.	4.6	12
125	Cellulose Pulp- and Castor Oil-Based Polyurethanes for Lubricating Applications: Influence of Streptomyces Action on Barley and Wheat Straws. Polymers, 2020, 12, 2822.	2.0	12
126	Design of lubricating grease formulations using recycled polypropylene from postconsumer films as thickener agent. Journal of Applied Polymer Science, 2013, 127, 1369-1376.	1.3	11

#	Article	IF	CITATIONS
127	Physical characterization of multiple emulsions formulated with a green solvent and different HLB block copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 458, 40-47.	2.3	11
128	Tribological and Rheological Characterization of New Completely Biogenic Lubricating Greases: A Comparative Experimental Investigation. Lubricants, 2018, 6, 45.	1.2	11
129	Impact of the processing method on the properties of castor oil/cellulose acetate polyurethane adhesives for bonding wood. International Journal of Adhesion and Adhesives, 2022, 116, 103153.	1.4	11
130	Synthesis and characterization of isocyanateâ€functionalized PVAâ€based polymers with applications as new additives in lubricant formulations. Journal of Applied Polymer Science, 2012, 125, 3259-3267.	1.3	10
131	PHYSICO-CHEMICAL AND BROMATOLOGICAL CHARACTERISTICS OF ARENCA AND RHEOLOGICAL PROPERTIES OF OIL-IN-WATER EMULSIONS CONTAINING ISOLATED PROTEIN. Ciencia E Agrotecnologia, 2015, 39, 634-641.	1.5	10
132	Development and Characterization of Novel Fibers Based on Potato Protein/Polyethylene Oxide Through Electrospinning. Fibers and Polymers, 2019, 20, 1586-1593.	1.1	10
133	The combined effect of H2O2 and light emitting diodes (LED) process assisted by TiO2 on the photooxidation behaviour of PLA. Polymer Testing, 2019, 73, 268-275.	2.3	10
134	Rheology of food emulsions. Rheology Series, 1999, 8, 87-118.	0.1	9
135	On the shear-induced structural degradation of lubricating greases and associated activation energy: An experimental rheological study. Tribology International, 2020, 144, 106105.	3.0	9
136	Use of a temperature ramp approach (TRA) to design an optimum and robust freeze-drying process for pharmaceutical formulations. International Journal of Pharmaceutics, 2020, 578, 119116.	2.6	9
137	Evaluation of wall slip effects in the lubricating grease/air two-phase flow along pipelines. Journal of Non-Newtonian Fluid Mechanics, 2006, 139, 190-196.	1.0	8
138	Understanding and optimization of the secondary drying step of a freeze-drying process: a case study. Drying Technology, 2021, 39, 1003-1017.	1.7	8
139	Emulsiones alimentarias aceite-en-agua estabilizadas con proteÃnas de atún. Grasas Y Aceites, 2010, 61, 352-360.	0.3	7
140	Influence of Processing on the Physical Stability of Multiple Emulsions Containing a Green Solvent. Chemical Engineering and Technology, 2016, 39, 1137-1143.	0.9	7
141	Characterization and Analysis of the Carbonation Process of a Lime Mortar Obtained from Phosphogypsum Waste. International Journal of Environmental Research and Public Health, 2021, 18, 6664.	1.2	7
142	Linear Viscoelasticity of Concentrated Polyethylene Glycol tert-Octylphenyl Ether Solutions. Journal of Dispersion Science and Technology, 2001, 22, 409-420.	1.3	6
143	The effect of recycled polymer addition on the thermorheological behavior of modified lubricating greases. Polymer Engineering and Science, 2013, 53, 818-826.	1.5	6
144	Rotational tumbling of Escherichia coli aggregates under shear. Physical Review E, 2016, 94, 062402.	0.8	6

#	Article	IF	CITATIONS
145	Thickening Castor Oil with a Lignin-Enriched Fraction from Sugarcane Bagasse Waste via Epoxidation: A Rheological and Hydrodynamic Approach. ACS Sustainable Chemistry and Engineering, 2021, 9, 10503-10512.	3.2	6
146	Advances in 3D printing of food and nutritional products. Advances in Food and Nutrition Research, 2022, , 173-210.	1.5	6
147	Tribological Properties of Greases Based on Biogenic Base Oils and Traditional Thickeners in Sapphire-Steel Contact. Tribology Letters, 2011, 44, 293-304.	1.2	5
148	Droplet-size distribution and stability of commercial injectable lipid emulsions containing fish oil. American Journal of Health-System Pharmacy, 2012, 69, 1332-1335.	0.5	5
149	Influence of oil polarity and material combination on the tribological response of greases formulated with biodegradable oils and bentonite and highly dispersed silica acid. Lubrication Science, 2013, 25, 397-412.	0.9	5
150	Influencia de las concentraciones de aceite y emulsionante en las propiedades reológicas de emulsiones aceite en agua del tipo salsa fina. Grasas Y Aceites, 1995, 46, 108-114.	0.3	5
151	Influence of some processing variables on the rheological properties of lithium lubricating greases modified with recycled polymers. International Journal of Materials and Product Technology, 2012, 43, 184.	0.1	4
152	Influence of Base Oil Polarity on the Transient Shear Flow of Biodegradable Lubricating Greases. Lubricants, 2015, 3, 611-627.	1.2	4
153	Unexpected Selectivity in the Functionalization of Neat Castor Oil under Benign Catalyst-Free Conditions. ACS Sustainable Chemistry and Engineering, 2018, 6, 7212-7215.	3.2	4
154	Formulation variables influencing the properties and physical stability of green multiple emulsions stabilized with a copolymer. Colloid and Polymer Science, 2019, 297, 1095-1104.	1.0	4
155	Linear viscoelastic behaviour of oil-in-water food emulsions stabilised by tuna-protein isolates. Food Science and Technology International, 2013, 19, 3-10.	1.1	3
156	Rheology of lubricating greases modified with reactive NCOâ€ŧerminated polymeric additives. Journal of Applied Polymer Science, 2010, 118, 693-704.	1.3	2
157	Formulation and characterization of oleogels based on highâ€oleic sunflower oil and ethylene vinyl acetate copolymer/polypropylene blends. Polymer Engineering and Science, 2015, 55, 1429-1440.	1.5	1
158	Structuring natural deep eutectic solvents with epoxidised lignin-enriched residues: a green alternative to petroleum-based thickened formulations. Journal of Molecular Liquids, 2022, 360, 119433.	2.3	1
159	Processing and Formulation of Lithium Lubricating Greases. AIP Conference Proceedings, 2006, , .	0.3	0
160	Transient Shear Flow of Model Lithium Lubricating Greases. AIP Conference Proceedings, 2008, , .	0.3	0
161	Optimization of Green Multiple Emulsions Processing to Improve Their Physical Stability. Chemical Engineering and Technology, 2017, 40, 1043-1050.	0.9	0

0

	#	Article	IF	CITATIONS
Linear viscoelasticity of liquid crystalline phases for a ethoxylated nonylphenol nonionic 0.3 0 surfactant/water system. Grasas Y Aceites, 2002, 53, .	163	Linear viscoelasticity of liquid crystalline phases for a ethoxylated nonylphenol nonionic surfactant/water system. Grasas Y Aceites, 2002, 53, .	0.3	0

164 The Measuring of Yield Stress Liquids. , 1998, , 203-203.