Pugazhendi Ilanchezhiyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390943/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. Journal of Alloys and Compounds, 2015, 634, 104-108.	5.5	77
2	Tunable UV-visible absorption of SnS ₂ layered quantum dots produced by liquid phase exfoliation. Nanoscale, 2017, 9, 1820-1826.	5.6	47
3	Highly Sensitive Flexible Photodetectors Based on Self-Assembled Tin Monosulfide Nanoflakes with Graphene Electrodes. ACS Applied Materials & Interfaces, 2017, 9, 32142-32150.	8.0	44
4	Ultrathin VS ₂ nanodiscs for highly stable electro catalytic hydrogen evolution reaction. International Journal of Energy Research, 2020, 44, 811-820.	4.5	35
5	High performance photodiodes based on chemically processed Cu doped SnS2 nanoflakes. Applied Surface Science, 2018, 455, 446-454.	6.1	33
6	Co-Ni based hybrid transition metal oxide nanostructures for cost-effective bi-functional electrocatalytic oxygen and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2020, 45, 391-400.	7.1	33
7	Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays. Applied Surface Science, 2021, 558, 149896.	6.1	33
8	Enhanced photoelectrical performance of chemically processed SnS2 nanoplates. RSC Advances, 2016, 6, 99631-99637.	3.6	27
9	Evidencing enhanced charge-transfer with superior photocatalytic degradation and photoelectrochemical water splitting in Mg modified few-layered SnS2. Journal of Colloid and Interface Science, 2019, 540, 476-485.	9.4	24
10	One dimensional ZnWO4 nanorods coupled with WO3 nanoplates heterojunction composite for efficient photocatalytic and photoelectrochemical activity. Ceramics International, 2022, 48, 4332-4340.	4.8	22
11	Highly efficient overall water splitting performance of gadoliniumâ€indiumâ€zinc ternary oxide nanostructured electrocatalyst. International Journal of Energy Research, 2020, 44, 6819-6827.	4.5	21
12	Fabrication of polypyrrole/ZnCoO nanohybrid systems for solar cell applications. Dalton Transactions, 2010, 39, 8325.	3.3	20
13	Ultrasonic-assisted synthesis of ZnTe nanostructures and their structural, electrochemical and photoelectrical properties. Ultrasonics Sonochemistry, 2017, 39, 414-419.	8.2	20
14	Effective Modulation of Optical and Photoelectrical Properties of SnS2 Hexagonal Nanoflakes via Zn Incorporation. Nanomaterials, 2019, 9, 924.	4.1	14
15	Photoelectrochemical analysis of shape modified γ- phase In2Se3 nanostructures photoelectrodes. Journal of Materials Research and Technology, 2020, 9, 12318-12327.	5.8	14
16	Neodymium (Nd) based oxide perovskite nanostructures for photocatalytic and photoelectrochemical water splitting functions. Environmental Research, 2021, 197, 111128.	7.5	14
17	Elevating the charge separation of MgFe2O4 nanostructures by Zn ions for enhanced photocatalytic and photoelectrochemical water splitting. Chemosphere, 2021, 283, 131134.	8.2	14
18	Vertically aligned ZnCdS nanowire arrays/P3HT heterojunctions for solar cell applications. Journal of Colloid and Interface Science, 2017, 487, 73-79.	9.4	12

#	Article	IF	CITATIONS
19	Fabrication of PEDOT:PSS/ZnO:S based hybrid heterostructures and their photoelectrical characteristics. Materials Letters, 2016, 170, 199-201.	2.6	10
20	Electrical property studies on chemically processed polypyrolle/aluminum doped ZnO based hybrid heterostructures. Chemical Physics Letters, 2016, 649, 130-134.	2.6	9
21	Surface induced charge transfer in CuxIn2-xS3 nanostructures and their enhanced photoelectronic and photocatalytic performance. Solar Energy Materials and Solar Cells, 2019, 191, 100-107.	6.2	9
22	Enhancing defect densities in SmErxFe1-xO3 nanostructures and tuning their electrical characteristics for photocatalytic and photoresponse functions. Journal of Materials Research and Technology, 2020, 9, 12585-12594.	5.8	9
23	<pre><scp> SmFeO ₃ </scp> and <scp> SmFe _{1â€x} Er _x O ₃ </scp> based perovskite nanorods for improved oxygen and hydrogen evolution functions. International Journal of Energy Research, 2021, 45, 3955-3965.</pre>	4.5	9
24	Electrocatalytic oxygen evolution and photoswitching functions of tungsten-titanium binary oxide nanostructures. Applied Surface Science, 2019, 496, 143652.	6.1	8
25	Arrayed CdTeMicrodots and Their Enhanced Photodetectivity via Piezo-Phototronic Effect. Nanomaterials, 2019, 9, 178.	4.1	8
26	3D flexible WxV1-xSe2 nanoplates arrays on carbon cloth as an novel efficient hydrogen evolution electrocatalysts. Applied Surface Science, 2021, 540, 148297.	6.1	7
27	Highly carbonized tungsten trioxide thin films and their enhanced oxygen evolution related electrocatalytic functions. Journal of Materials Research and Technology, 2021, 12, 2216-2223.	5.8	6
28	Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance. Journal of Materials Research and Technology, 2022, 18, 4946-4955.	5.8	6
29	Enhanced UV photodetectivity in solution driven ZnO nanosheets via piezo-phototronic effect. Journal of Materials Research and Technology, 2021, 13, 397-407.	5.8	5
30	Robust photocatalytic and photoelectrochemical functions of PrFe 1-xMnxO3 perovskite nanostructures. Ceramics International, 2022, 48, 29332-29339.	4.8	5
31	MWCNT/CdS nanobelt based hybrid structures and their enhanced photoelectrical performance. Chemical Physics Letters, 2017, 667, 68-73.	2.6	4
32	Fabrication of Zn1â^'xNixWO4 nanorods with superior photoelectrochemical and photocatalytic performances. Ceramics International, 2022, 48, 29438-29444.	4.8	3
33	Boosting the physico-chemical and charge transfer characteristics in Zn1-xTMxO nanostructures for enhanced photocatalytic and photoelectrochemical activities. Journal of Materials Research and Technology 2021	5.8	2