
Riccardo Giubilato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3909304/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ARCHES Space-Analogue Demonstration Mission: Towards Heterogeneous Teams of Autonomous Robots for Collaborative Scientific Sampling in Planetary Exploration. IEEE Robotics and Automation Letters, 2020, 5, 5315-5322.	3.3	46
2	An evaluation of ROS-compatible stereo visual SLAM methods on a nVidia Jetson TX2. Measurement: Journal of the International Measurement Confederation, 2019, 140, 161-170.	2.5	45
3	Retrieving Scale on Monocular Visual Odometry Using Low-Resolution Range Sensors. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5875-5889.	2.4	30
4	German Aerospace Center's advanced robotic technology for future lunar scientific missions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20190574.	1.6	19
5	An Experimental Comparison of ROS-compatible Stereo Visual SLAM Methods for Planetary Rovers. , 2018, , .		15
6	Relocalization With Submaps: Multi-Session Mapping for Planetary Rovers Equipped With Stereo Cameras. IEEE Robotics and Automation Letters, 2020, 5, 580-587.	3.3	15
7	Scale Correct Monocular Visual Odometry Using a LiDAR Altimeter. , 2018, , .		12
8	MiniVO: Minimalistic Range Enhanced Monocular System for Scale Correct Pose Estimation. IEEE Sensors Journal, 2020, 20, 11874-11886.	2.4	8
9	A comparison of monocular and stereo visual FastSLAM implementations. , 2016, , .		7
10	Monocular visual odometry aided by a low resolution time of flight camera. , 2017, , .		7
11	Experimental evaluation of a camera rig extrinsic calibration method based on retro-reflective markers detection. Measurement: Journal of the International Measurement Confederation, 2019, 140, 47-55.	2.5	7
12	Gaussian Process Gradient Maps for Loop-Closure Detection in Unstructured Planetary Environments. , 2020, , .		6
13	Challenges of SLAM in Extremely Unstructured Environments: The DLR Planetary Stereo, Solid-State LiDAR, Inertial Dataset. IEEE Robotics and Automation Letters, 2022, 7, 8721-8728.	3.3	6
14	Metrological Characterization of a Vision-Based System for Relative Pose Measurements with Fiducial Marker Mapping for Spacecrafts. Robotics, 2018, 7, 43.	2.1	5
15	The MMX Rover on Phobos: The Preliminary Design of the DLR Autonomous Navigation Experiment. , 2021, , .		5
16	Camera Rig Extrinsic Calibration Using a Motion Capture System. , 2018, , .		4
17	Design of a user-friendly control system for planetary rovers with CPS feature. , 2021, , .		4
18	Viewpoint Selection for Rover Relative Pose Estimation Driven by Minimal Uncertainty Criteria. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-12.	2.4	4

#	Article	IF	CITATIONS
19	Calibration of extrinsic parameters of a hybrid vision system for navigation comprising a very low resolution Time-of-Flight camera. , 2017, , .		3
20	Rover Relative Localization Testing in Martian Relevant Environment. , 2019, , .		3
21	Simulation Framework for Mobile Robots in Planetary-Like Environments. , 2020, , .		3
22	Effect of rolling shutter on visual odometry systems suitable for planetary exploration. , 2016, , .		2
23	Multi-Modal Loop Closing in Unstructured Planetary Environments with Visually Enriched Submaps. , 2021, , .		2
24	Stereo visual odometry failure recovery using monocular techniques. , 2017, , .		0
25	Uncertainty evaluation of vision-based approaches for distance measurement of a tether tip-mass. , 2019, , .		0
26	Position Measurement and Uncertainty Analysis for the Shutter Mechanism Mounted on the Rosetta Mission. , 2018, , .		0
27	Learning-Based Matching of 3D Submaps from Dense Stereo for Planetary-Like Environments. , 2021, , .		0