
Akihiro Nishiguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3908967/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rapid Construction of Threeâ€Dimensional Multilayered Tissues with Endothelial Tube Networks by the Cellâ€Accumulation Technique. Advanced Materials, 2011, 23, 3506-3510.	11.1	241
2	4D Printing of a Light-Driven Soft Actuator with Programmed Printing Density. ACS Applied Materials & Interfaces, 2020, 12, 12176-12185.	4.0	110
3	Development of vascularized iPSC derived 3D-cardiomyocyte tissues by filtration Layer-by-Layer technique and their application for pharmaceutical assays. Acta Biomaterialia, 2016, 33, 110-121.	4.1	106
4	Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials, 2014, 35, 4739-4748.	5.7	84
5	Natural severe fever with thrombocytopenia syndrome virus infection in domestic cats in Japan. Veterinary Microbiology, 2019, 236, 108346.	0.8	56
6	Inâ€Gel Direct Laser Writing for 3Dâ€Designed Hydrogel Composites That Undergo Complex Selfâ€Shaping. Advanced Science, 2018, 5, 1700038.	5.6	46
7	InÂvitro 3D blood/lymph-vascularized human stromal tissues for preclinical assays of cancer metastasis. Biomaterials, 2018, 179, 144-155.	5.7	44
8	Underwater-adhesive microparticle dressing composed of hydrophobically-modified Alaska pollock gelatin for gastrointestinal tract wound healing. Acta Biomaterialia, 2019, 99, 387-396.	4.1	44
9	In vitro reproduction of endochondral ossification using a 3D mesenchymal stem cell construct. Integrative Biology (United Kingdom), 2012, 4, 1207.	0.6	43
10	Multifunctional Hydrophobized Microparticles for Accelerated Wound Healing after Endoscopic Submucosal Dissection. Small, 2019, 15, e1901566.	5.2	41
11	Production of interleukin (IL)-33 in the lungs during multiple antigen challenge-induced airway inflammation in mice, and its modulation by a glucocorticoid. European Journal of Pharmacology, 2015, 757, 34-41.	1.7	34
12	In vitro placenta barrier model using primary human trophoblasts, underlying connective tissue and vascular endothelium. Biomaterials, 2019, 192, 140-148.	5.7	33
13	Nanometerâ€sized extracellular matrix coating on polymerâ€based scaffold for tissue engineering applications. Journal of Biomedical Materials Research - Part A, 2016, 104, 94-103.	2.1	32
14	Basement Membrane Mimics of Biofunctionalized Nanofibers for a Bipolar-Cultured Human Primary Alveolar-Capillary Barrier Model. Biomacromolecules, 2017, 18, 719-727.	2.6	32
15	Ultrastructure of blood and lymphatic vascular networks in three-dimensional cultured tissues fabricated by extracellular matrix nanofilm-based cell accumulation technique. Microscopy (Oxford,) Tj ETQq1 1	0.7 8.4 314	rg ₿ ∂/Overlo
16	Secretions from placenta, after hypoxia/reoxygenation, can damage developing neurones of brain under experimental conditions. Experimental Neurology, 2014, 261, 386-395.	2.0	29
17	Osteoclast-Responsive, Injectable Bone of Bisphosphonated-Nanocellulose that Regulates Osteoclast/Osteoblast Activity for Bone Regeneration. Biomacromolecules, 2019, 20, 1385-1393.	2.6	28
18	Construction and myogenic differentiation of 3D myoblast tissues fabricated by fibronectin-gelatin nanofilm coating. Biochemical and Biophysical Research Communications, 2016, 474, 515-521.	1.0	27

Акініго Nishiguchi

#	Article	IF	CITATIONS
19	Human Co- and Triple-Culture Model of the Alveolar-Capillary Barrier on a Basement Membrane Mimic. Tissue Engineering - Part C: Methods, 2018, 24, 495-503.	1.1	25
20	Swarm robotic network using Lévy flight in target detection problem. Artificial Life and Robotics, 2016, 21, 295-301.	0.7	22
21	A Thixotropic, Cell-Infiltrative Nanocellulose Hydrogel That Promotes in Vivo Tissue Remodeling. ACS Biomaterials Science and Engineering, 2020, 6, 946-958.	2.6	20
22	A pH-driven genipin gelator to engineer decellularized extracellular matrix-based tissue adhesives. Acta Biomaterialia, 2021, 131, 211-221.	4.1	20
23	Designing an anti-inflammatory and tissue-adhesive colloidal dressing for wound treatment. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110737.	2.5	19
24	Highâ€Throughput Blood―and Lymphâ€Capillaries with Openâ€Ended Pores Which Allow the Transport of Drugs and Cells. Advanced Healthcare Materials, 2016, 5, 1969-1978.	3.9	18
25	3D-fibroblast tissues constructed by a cell-coat technology enhance tight-junction formation of human colon epithelial cells. Biochemical and Biophysical Research Communications, 2015, 457, 363-369.	1.0	17
26	Sustainedâ€immunostimulatory nanocellulose scaffold to enhance vaccine efficacy. Journal of Biomedical Materials Research - Part A, 2020, 108, 1159-1170.	2.1	16
27	3D-Printing of Structure-Controlled Antigen Nanoparticles for Vaccine Delivery. Biomacromolecules, 2020, 21, 2043-2048.	2.6	15
28	Oligoethyleneimine onjugated Hyaluronic Acid Modulates Inflammatory Responses and Enhances Therapeutic Efficacy for Ulcerative Colitis. Advanced Functional Materials, 2021, 31, 2100548.	7.8	14
29	Hotmelt tissue adhesive with supramolecularly-controlled sol-gel transition for preventing postoperative abdominal adhesion. Acta Biomaterialia, 2022, 146, 80-93.	4.1	14
30	Hemostatic, Tissue-Adhesive Colloidal Wound Dressing Functionalized by UV Irradiation. ACS Applied Bio Materials, 2020, 3, 1705-1711.	2.3	13
31	CXCL12 promotes CCR7 ligand–mediated breast cancer cell invasion and migration toward lymphatic vessels. Cancer Science, 2022, 113, 1338-1351.	1.7	13
32	Robust closure of post-endoscopic submucosal dissection perforation by microparticle-based wound dressing. Materials Science and Engineering C, 2021, 123, 111993.	3.8	11
33	Dynamic Nanoâ€Interfaces Enable Harvesting of Functional 3Dâ€Engineered Tissues. Advanced Healthcare Materials, 2015, 4, 1164-1168.	3.9	10
34	Structural and Viscoelastic Properties of Layer-by-Layer Extracellular Matrix (ECM) Nanofilms and Their Interactions with Living Cells. ACS Biomaterials Science and Engineering, 2015, 1, 816-824.	2.6	10
35	Long-Term and Clinically Relevant Full-Thickness Human Skin Equivalent for Psoriasis. ACS Applied Bio Materials, 2020, 3, 6639-6647.	2.3	9
36	Reconstruction of Ultraâ€ŧhin Alveolarâ€capillary Basement Membrane Mimics. Advanced Biology, 2021, 5, e2000427.	1.4	9

AKIHIRO NISHIGUCHI

#	Article	IF	CITATIONS
37	Prevention of postoperative adhesion with a colloidal gel based on decyl group-modified Alaska pollock gelatin microparticles. Acta Biomaterialia, 2022, 149, 139-149.	4.1	9
38	Engineering an Injectable Tough Tissue Adhesive through Nanocellulose Reinforcement. ACS Applied Bio Materials, 2020, 3, 9093-9100.	2.3	8
39	In Situ 3D-Printing using a Bio-ink of Protein–photosensitizer Conjugates for Single-cell Manipulation. ACS Applied Bio Materials, 2020, 3, 2378-2384.	2.3	8
40	Three-dimensional structure of a high affinity anti-(4-hydroxy-3-nitrophenyl)acetyl antibody possessing a glycine residue at position 95 of the heavy chain. Molecular Immunology, 2019, 114, 545-552.	1.0	7
41	Threeâ€dimensional cultured tissue constructs that imitate human living tissue organization for analysis of tumor cell invasion. Journal of Biomedical Materials Research - Part A, 2019, 107, 292-300.	2.1	7
42	Adhesive Submucosal Injection Material Based on the Nonanal Group-Modified Poly(vinyl) Tj ETQq0 0 0 rgBT /Ove Materials, 2020, 3, 4370-4379.	rlock 10 T 2.3	rf 50 547 Tc 7
43	Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Advanced Healthcare Materials, 2021, 10, e2100874.	3.9	7
44	Cell—Cell Crosslinking by Bioâ€Molecular Recognition of Heparinâ€Based Layerâ€by‣ayer Nanofilms. Macromolecular Bioscience, 2015, 15, 312-317.	2.1	6
45	Prevention of pulmonary air leaks using a biodegradable tissue-adhesive fiber sheet based on Alaska pollock gelatin modified with decanyl groups. Biomaterials Science, 2021, 9, 861-873.	2.6	5
46	Covering Post-Endoscopic Submucosal Dissection Ulcers in Miniature Swine with Hexanoyl (Hx:C6) Group-Modified Alkaline-Treated Gelatin Porous Film (HAG) Induces Proper Healing by Decreasing Inflammation and Fibrosis. Digestion, 2021, 102, 415-427.	1.2	4
47	A Trade-off Between Thermostability and Binding Affinity of Anti-(4-hydroxy-3-nitrophenyl)Acetyl Antibodies During the Course of Affinity Maturation. Protein Journal, 2022, 41, 293-303.	0.7	4
48	Development of an immunosuppressive camouflage-coating platform with nanocellulose and cell membrane vesicles. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1912-1924.	1.9	3
49	Preparation of Reduction-sensitive Nanogels with a Large Swelling Capacity by a Surfactant-free Precipitation Method. Chemistry Letters, 2010, 39, 1184-1185.	0.7	2
50	Evaluation system for mechanobiology of three-dimensional tissue multilayered in vitro. , 2015, , .		1
51	A Novel Alaska Pollock Gelatin Sealant Shows Higher Bonding Strength and Nerve Regeneration Comparable to That of Fibrin Sealant in a Cadaveric Model and a Rat Model. Plastic and Reconstructive Surgery, 2021, 148, 742e-752e.	0.7	1
52	Fabrication of highly stretchable hydrogel based on crosslinking between alendronates functionalized poly-13-glutamate and calcium cations. Materials Today Bio, 2022, 14, 100225.	2.6	1
53	Construction of Mouseâ€Embryonicâ€Cellâ€Derived 3D Pacemaker Tissues by Layerâ€byâ€Layer Nanofilm Coatin ChemNanoMat, 2016, 2, 466-471.	^{lg} 1.5	0
54	Biological effect of vascular endothelial growth factor-C on culture lymphatic endothelial cells. Journal of Dermatological Science, 2016, 84, e26.	1.0	0

#	Article	IF	CITATIONS
55	The Potential Use of Three-Dimensional Cellular Multilayers as a Blood Vessel Model. Nanomedicine and Nanotoxicology, 2014, , 95-129.	0.1	0
56	Development of biomaterials for constructing tumor microenvironment <i>in vitro</i> models. Drug Delivery System, 2021, 36, 256-264.	0.0	0