Carlos Renero-Lecuna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3908754/publications.pdf

Version: 2024-02-01

840585 839398 18 547 11 18 citations h-index g-index papers 18 18 18 1020 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Challenges for optical nanothermometry in biological environments. Chemical Society Reviews, 2022, 51, 4223-4242.	18.7	38
2	Free-labeled nanoclay intracellular uptake tracking by confocal Raman imaging. Applied Surface Science, 2021, 537, 147870.	3.1	6
3	Nd ³⁺ -Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers. Journal of Physical Chemistry C, 2021, 125, 19887-19896.	1.5	12
4	<i>In Vivo</i> Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies. ACS Applied Materials & Interfaces, 2021, 13, 49589-49601.	4.0	23
5	Development of an accurate method for dispersion and quantification of carbon nanotubes in biological media. Analytical Methods, 2020, 12, 5642-5647.	1.3	2
6	Dye-doped biodegradable nanoparticle SiO ₂ coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for <i>in vivo</i> imaging studies. Nanoscale, 2020, 12, 6164-6175.	2.8	22
7	High-Pressure Melting Curve of Zintl Sodium Silicide Na4Si4 by In Situ Electrical Measurements. Inorganic Chemistry, 2019, 58, 10822-10828.	1.9	5
8	Effect of Size, Shape, and Composition on the Interaction of Different Nanomaterials with HeLa Cells. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	19
9	The effect of cation disorder on magnetic properties of new double perovskites La2Ni Co1-MnO6 (xÂ=) Tj ETQq1 I	1 0.78431 2.8	4.rgBT /Over
10	Nature of Hexagonal Silicon Forming via High-Pressure Synthesis: Nanostructured Hexagonal 4H Polytype. Nano Letters, 2018, 18, 5989-5995.	4.5	43
11	Structural Metastability and Quantum Confinement in Zn1–xCoxO Nanoparticles. Nano Letters, 2016, 16, 5204-5212.	4.5	6
12	Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis. Nanoscale, 2016, 8, 10963-10973.	2.8	57
13	Role of high pressure for understanding luminescent phenomena. Journal of Luminescence, 2016, 169, 410-414.	1.5	2
14	Morphological study of F8BT:PFB thin film blends. Organic Electronics, 2015, 23, 87-98.	1.4	8
15	Pressure-induced Pr3+ 3P0 luminescence in cubic Y2O3. Journal of Luminescence, 2014, 146, 27-32.	1.5	31
16	Photoluminescence in ZnO:Co ²⁺ (0.01%–5%) Nanoparticles, Nanowires, Thin Films, and Single Crystals as a Function of Pressure and Temperature: Exploring Electron–Phonon Interactions. Chemistry of Materials, 2014, 26, 1100-1107.	3.2	19
17	Self-assembly of ultra-thin lanthanide oxide nanowires via surfactant-mediated imperfect oriented attachment of nanoparticles. CrystEngComm, 2012, 14, 7110.	1.3	20
18	Origin of the High Upconversion Green Luminescence Efficiency in β-NaYF ₄ :2%Er ³⁺ ,20%Yb ³⁺ . Chemistry of Materials, 2011, 23, 3442-3448.	3.2	213