Eric Chatelain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3908077/publications.pdf

Version: 2024-02-01

361413 454955 1,929 31 20 30 citations h-index g-index papers 32 32 32 2273 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The unmet medical need for Trypanosoma cruzi-infected patients: Monitoring the disease status. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165628.	3.8	4
2	Re-evaluating pretomanid analogues for Chagas disease: Hit-to-lead studies reveal both inÂvitro and inÂvivo trypanocidal efficacy. European Journal of Medicinal Chemistry, 2020, 207, 112849.	5.5	13
3	Animal models of Chagas disease and their translational value to drug development. Expert Opinion on Drug Discovery, 2020, 15, 1381-1402.	5.0	23
4	Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 13, 107-120.	3.4	8
5	Drug Discovery for Chagas Disease: Impact of Different Host Cell Lines on Assay Performance and Hit Compound Selection. Tropical Medicine and Infectious Disease, 2019, 4, 82.	2.3	30
6	Development of (6 <i>>R</i>)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 <i>H</i> -imidazo[2,1- <i>b</i>][1,3]oxazine (DNDI-8219): A New Lead for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2018, 61, 2329-2352.	6.4	42
7	Assessment of a pretomanid analogue library for African trypanosomiasis: Hit-to-lead studies on 6-substituted 2-nitro-6,7-dihydro-5H-imidazo[2,1-b][1,3]thiazine 8-oxides. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 207-213.	2.2	22
8	Phenotypic screening approaches for Chagas disease drug discovery. Expert Opinion on Drug Discovery, 2018, 13, 141-153.	5.0	68
9	Chagas disease research and development: Is there light at the end of the tunnel?. Computational and Structural Biotechnology Journal, 2017, 15, 98-103.	4.1	111
10	7-Substituted 2-Nitro-5,6-dihydroimidazo $[2,1-\langle i \rangle b \langle i \rangle][1,3]$ oxazines: Novel Antitubercular Agents Lead to a New Preclinical Candidate for Visceral Leishmaniasis. Journal of Medicinal Chemistry, 2017, 60, 4212-4233.	6.4	47
11	6-Nitro-2,3-dihydroimidazo[2,1-b][1,3]thiazoles: Facile synthesis and comparative appraisal against tuberculosis and neglected tropical diseases. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 2583-2589.	2.2	26
12	Antileishmanial and antitrypanosomal drug identification. Emerging Topics in Life Sciences, 2017, 1, $613-620$.	2.6	5
13	Nitroheterocyclic drugs cure experimental Trypanosoma cruzi infections more effectively in the chronic stage than in the acute stage. Scientific Reports, 2016, 6, 35351.	3.3	72
14	Translational challenges of animal models in Chagas disease drug development: a review. Drug Design, Development and Therapy, 2015, 9, 4807.	4.3	96
15	Enantiomers of Nifurtimox Do Not Exhibit Stereoselective Anti-Trypanosoma cruzi Activity, Toxicity, or Pharmacokinetic Properties. Antimicrobial Agents and Chemotherapy, 2015, 59, 3645-3647.	3.2	4
16	Novel Therapeutic Approaches for Neglected Infectious Diseases. Journal of Biomolecular Screening, 2015, 20, 3-5.	2.6	8
17	Limited Ability of Posaconazole To Cure both Acute and Chronic Trypanosoma cruzi Infections Revealed by Highly Sensitive <i>In Vivo</i> Imaging. Antimicrobial Agents and Chemotherapy, 2015, 59, 4653-4661.	3.2	124
18	Reply to "Drug Susceptibility of Genetically Engineered Trypanosoma cruzi Strains and Sterile Cure in Animal Models as a Criterion for Potential Clinical Efficacy of Anti-T. cruzi Drugs― Antimicrobial Agents and Chemotherapy, 2015, 59, 7925-7925.	3.2	2

#	Article	IF	CITATIONS
19	Chagas Disease Drug Discovery: Toward a New Era. Journal of Biomolecular Screening, 2015, 20, 22-35.	2.6	227
20	Antitrypanosomal Activity of Fexinidazole Metabolites, Potential New Drug Candidates for Chagas Disease. Antimicrobial Agents and Chemotherapy, 2014, 58, 4362-4370.	3.2	57
21	Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infectious Diseases, 2014, 14, 302.	2.9	42
22	Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Scientific Reports, 2014, 4, 4703.	3.3	161
23	Two Analogues of Fenarimol Show Curative Activity in an Experimental Model of Chagas Disease. Journal of Medicinal Chemistry, 2013, 56, 10158-10170.	6.4	43
24	Complexes of Trypanosoma cruzi Sterol 14α-Demethylase (CYP51) with Two Pyridine-based Drug Candidates for Chagas Disease. Journal of Biological Chemistry, 2013, 288, 31602-31615.	3.4	69
25	Selection and optimization of hits from a high-throughput phenotypic screen against <i>Trypanosoma cruzi</i> . Future Medicinal Chemistry, 2013, 5, 1733-1752.	2.3	19
26	An Image-Based High-Content Screening Assay for Compounds Targeting Intracellular Leishmania donovani Amastigotes in Human Macrophages. PLoS Neglected Tropical Diseases, 2012, 6, e1671.	3.0	117
27	Pharmacological Characterization, Structural Studies, andln VivoActivities of Anti-Chagas Disease Lead Compounds Derived from Tipifarnib. Antimicrobial Agents and Chemotherapy, 2012, 56, 4914-4921.	3.2	50
28	Analogues of Fenarimol Are Potent Inhibitors of Trypanosoma cruzi and Are Efficacious in a Murine Model of Chagas Disease. Journal of Medicinal Chemistry, 2012, 55, 4189-4204.	6.4	58
29	Drug discovery and development for neglected diseases: the DNDi model. Drug Design, Development and Therapy, 2011, 5, 175.	4.3	82
30	In vitro and in vivo experimental models for drug screening and development for Chagas disease. Memorias Do Instituto Oswaldo Cruz, 2010, 105, 233-238.	1.6	278
31	The translational challenge in Chagas disease drug development. Memorias Do Instituto Oswaldo Cruz, 0, 117, .	1.6	21