
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3907896/publications.pdf Version: 2024-02-01

HISASHI NAKAMUDA

#	Article	IF	CITATIONS
1	Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2017, 185, 16-27.	5.2	204
2	An experimental and modeling study of shock tube and rapid compression machine ignition of n-butylbenzene/air mixtures. Combustion and Flame, 2014, 161, 49-64.	5.2	126
3	Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2010, 157, 1572-1580.	5.2	97
4	Stabilized three-stage oxidation of gaseous n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2011, 33, 3259-3266.	3.9	97
5	A high-pressure rapid compression machine study of n-propylbenzene ignition. Combustion and Flame, 2014, 161, 65-74.	5.2	91
6	Bifurcations and negative propagation speeds of methane/air premixed flames with repetitive extinction and ignition in a heated microchannel. Combustion and Flame, 2012, 159, 1631-1643.	5.2	69
7	Effect of radical quenching on CH4/air flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2015, 35, 3389-3396.	3.9	69
8	Effect of the incident shock wave interacting with transversal jet flow on the mixing and combustion. Proceedings of the Combustion Institute, 2011, 33, 2335-2342.	3.9	68
9	Study on combustion and ignition characteristics of natural gas components in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2014, 161, 37-48.	5.2	63
10	Study on octane number dependence of PRF/air weak flames at 1–5 atm in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2012, 159, 959-967.	5.2	62
11	Combustion and ignition characteristics of ammonia/air mixtures in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2017, 36, 4217-4226.	3.9	61
12	Effects of radiation heat loss on laminar premixed ammonia/air flames. Proceedings of the Combustion Institute, 2019, 37, 1741-1748.	3.9	60
13	Effects of HDDR treatment conditions on magnetic properties of Ndâ€Feâ€B anisotropic powders. Journal of Applied Physics, 1994, 76, 6828-6830.	2.5	58
14	Filtration Combustion of Methane in High-Porosity Micro-Fibrous Media. Combustion Science and Technology, 2009, 181, 654-669.	2.3	47
15	Study on cetane number dependence of diesel surrogates/air weak flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2013, 34, 3411-3417.	3.9	46
16	Characteristics of n-heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2013, 34, 3419-3426.	3.9	44
17	An experimental and modeling study of surrogate mixtures of n-propyl- and n-butylbenzene in n-heptane to simulate n-decylbenzene ignition. Combustion and Flame, 2014, 161, 1460-1473.	5.2	44
18	Study on stretch extinction limits of CH4/CO2 versus high temperature O2/CO2 counterflow non-premixed flames. Combustion and Flame, 2014, 161, 1526-1536.	5.2	41

#	Article	IF	CITATIONS
19	Sooting limits and PAH formation of n-hexadecane and 2,2,4,4,6,8,8-heptamethylnonane in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2015, 35, 3397-3404.	3.9	41
20	Characteristics of n-butane weak flames at elevated pressures in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2015, 35, 3405-3412.	3.9	39
21	Dynamic behavior of splitting flames in a heated channel. Combustion, Explosion and Shock Waves, 2009, 45, 245-250.	0.8	38
22	Study on combustion and ignition characteristics of ethylene, propylene, 1-butene and 1-pentene in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2016, 163, 209-219.	5.2	36
23	Flame dynamics in a heated meso-scale radial channel. Proceedings of the Combustion Institute, 2013, 34, 3351-3359.	3.9	35
24	Characteristic regimes of premixed gas combustion in high-porosity micro-fibrous porous media. Combustion Theory and Modelling, 2010, 14, 571-581.	1.9	34
25	An experimental and modeling study of diethyl carbonate oxidation. Combustion and Flame, 2015, 162, 1395-1405.	5.2	34
26	Soot formation characteristics and PAH formation process in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2014, 161, 582-591.	5.2	31
27	Study on sooting behavior of premixed C1–C4 n-alkanes/air flames using a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2016, 174, 100-110.	5.2	28
28	Study on flame responses and ignition characteristics of CH 4 /O 2 /CO 2 mixture in a micro flow reactor with a controlled temperature profile. Applied Thermal Engineering, 2015, 84, 360-367.	6.0	24
29	Study on pressure dependences of ethanol oxidation by separated weak flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2013, 34, 3435-3443.	3.9	23
30	Microcombustion for micro-tubular flame-assisted fuel cell power and heat cogeneration. Journal of Power Sources, 2019, 413, 191-197.	7.8	23
31	Experimental investigation on flame pattern formations of DME–air mixtures in a radial microchannel. Combustion and Flame, 2010, 157, 1637-1642.	5.2	22
32	Effects of CO-to-H2 ratio and diluents on ignition properties of syngas examined by weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2016, 172, 94-104.	5.2	22
33	Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part I: Reactivities of dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate. Combustion and Flame, 2022, 237, 111810.	5.2	21
34	Effects of mixture composition on oxidation and reactivity of DME/NH3/air mixtures examined by a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2022, 238, 111911.	5.2	20
35	Experimental investigation of flame pattern transitions in a heated radial micro-channel. Applied Thermal Engineering, 2012, 47, 111-118.	6.0	19
36	Ultra-lean combustion characteristics of premixed methane flames in a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2017, 36, 4227-4233.	3.9	18

#	Article	IF	CITATIONS
37	Extinction characteristics of CH4/O2/Xe radiative counterflow planar premixed flames and their transition to ball-like flames. Combustion and Flame, 2013, 160, 1235-1241.	5.2	17
38	Near-lean limit combustion regimes of low-Lewis-number stretched premixed flames. Combustion and Flame, 2015, 162, 1712-1718.	5.2	17
39	Cellular and sporadic flame regimes of low-Lewis-number stretched premixed flames. Proceedings of the Combustion Institute, 2013, 34, 981-988.	3.9	16
40	Analysis of kinetic models for rich to ultra-rich premixed CH4/air weak flames using a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 206, 68-82.	5.2	16
41	Investigation of microcombustion reforming of ethane/air and micro-Tubular Solid Oxide Fuel Cells. Journal of Power Sources, 2020, 450, 227606.	7.8	16
42	Study on oxidation and pyrolysis of carbonate esters using a micro flow reactor with a controlled temperature profile. Part II: Chemical kinetic modeling of ethyl methyl carbonate. Combustion and Flame, 2022, 238, 111878.	5.2	16
43	Synthesis and Magnetic Properties of Ferroxplana Type Ferrite. Materials Transactions, JIM, 1996, 37, 878-882.	0.9	15
44	Investigation of the chemical and dilution effects of major EGR constituents on the reactivity of PRF by weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 209, 13-26.	5.2	15
45	Multi-stage oxidation of a CH2F2/air mixture examined by weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 201, 140-147.	5.2	15
46	OH and CH ₂ O Laser-Induced Fluorescence Measurements for Hydrogen Flames and Methane, <i>n</i> -Butane, and Dimethyl Ether Weak Flames in a Micro Flow Reactor with a Controlled Temperature Profile. Energy & Fuels, 2017, 31, 2298-2307.	5.1	14
47	Impact of low concentration hydrocarbons in natural gas on thermal partial oxidation in a micro-flow reactor for solid oxide fuel cell applications. Journal of Power Sources, 2020, 477, 229007.	7.8	13
48	Improvements of Magnetic Properties of Sm ₂ Fe ₁₇ C <i>_x</i> Melt-Spun Ribbons by Additional Elements. Materials Transactions, JIM, 1992, 33, 146-150.	0.9	12
49	Microgravity experiments of single droplet combustion in oscillatory flow at elevated pressure. Proceedings of the Combustion Institute, 2009, 32, 2171-2178.	3.9	11
50	Study on the combustion limit, near-limit extinction boundary, and flame regimes of low-Lewis-number CH4/O2/CO2 counterflow flames under microgravity. Combustion and Flame, 2016, 172, 13-19.	5.2	10
51	Broken C-shaped extinction curve and near-limit flame behaviors of low Lewis number counterflow flames under microgravity. Combustion and Flame, 2018, 194, 343-351.	5.2	10
52	Effect of the Location of an Incident Shock Wave on Combustion and Flow Field of Wall Fuel-Injection. Transactions of the Japan Society for Aeronautical and Space Sciences, 2008, 51, 170-175.	0.7	9
53	Bifurcations of stretched premixed flame stabilized by a hot wall. Proceedings of the Combustion Institute, 2009, 32, 1367-1374.	3.9	9
54	Initial-stage reaction of methane examined by optical measurements of weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2019, 206, 292-307.	5.2	9

#	Article	IF	CITATIONS
55	Oxidation of a C2HF5/air mixture examined by weak flames in a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2020, 217, 12-20.	5.2	9
56	Thermal partial oxidation of n-butane in a micro-flow reactor and solid oxide fuel cell stability assessment. Energy Conversion and Management, 2022, 254, 115222.	9.2	9
57	A novel reactivity index for SI engine fuels by separated weak flames in a micro flow reactor with a controlled temperature profile. Fuel, 2019, 245, 429-437.	6.4	7
58	2D computations of FREI with cool flames for n-heptane/air mixture. Proceedings of the Combustion Institute, 2021, 38, 2247-2255.	3.9	7
59	Nitromethane pyrolysis in shock tubes and a micro flow reactor with a controlled temperature profile. Proceedings of the Combustion Institute, 2021, 38, 1007-1015.	3.9	7
60	Development of an Ethanol Reduced Kinetic Mechanism Based on the Quasi-Steady State Assumption and Feasibility Evaluation for Multi-Dimensional Flame Analysis. Journal of Thermal Science and Technology, 2010, 5, 189-199.	1.1	6
61	Study on Products from Fuel-rich Methane Combustion near Sooting Limit Temperature Region and Importance of Methyl Radicals for the Formation of First Aromatic Rings. Combustion Science and Technology, 2022, 194, 832-849.	2.3	6
62	Study on methane oxidation affected by dimethyl ether oxidation at low temperatures using a micro flow reactor with a controlled temperature profile. Combustion and Flame, 2021, 223, 320-329.	5.2	6
63	A Study of Interaction between Shock Wave and Cross-Flow Jet Using Particle Tracking Velocimetry. Transactions of the Japan Society for Aeronautical and Space Sciences, 2009, 52, 81-88.	0.7	5
64	Effects of n-butanol addition on sooting tendency and formation of C1 –C2 primary intermediates of n-heptane/air mixture in a micro flow reactor with a controlled temperature profile. Combustion Science and Technology, 2018, 190, 2066-2081.	2.3	5
65	Dynamics of ball-like flames in extremely low-speed counterflow field in near-lean limit low-Lewis number mixture. Proceedings of the Combustion Institute, 2021, 38, 1965-1972.	3.9	5
66	Evaluation of the reactivity of ultra-lean PRF/air mixtures by weak flames in a micro flow reactor with a controlled temperature profile. Combustion Science and Technology, 2018, 190, 1950-1970.	2.3	4
67	Study of high-temperature oxygen combustion (HiTOx) and its heating performance using a laboratory-scale test furnace. Applied Thermal Engineering, 2021, 194, 117077.	6.0	4
68	Effects of blending ratios on the reactivities of CH2F2/C2HF5 refrigerant blends. Proceedings of the Combustion Institute, 2021, 38, 2487-2495.	3.9	3
69	Reactivity of CO/H ₂ /CH ₄ /Air Mixtures Derived from In-Cylinder Fuel Reformation Examined by a Micro Flow Reactor with a Controlled Temperature Profile. Combustion Science and Technology, 2021, 193, 266-279.	2.3	3
70	Effects of n-Butanol Blends on the Formation of Hydrocarbons and PAHs from Fuel-Rich Heptane Combustion in a Micro Flow Reactor with a Controlled Temperature Profile. Combustion Science and Technology, 2020, , 1-26.	2.3	2
71	Chemical Interpretation on the Multi-Stage Oxidation of Diethyl Ether. Journal of Thermal Science, 2023, 32, 513-520.	1.9	1
72	OH-LIF measurement of H ₂ /O ₂ /N ₂ flames in a micro flow reactor with a controlled temperature profile. Journal of Physics: Conference Series, 2014, 557, 012075.	0.4	0

 Novel Ignition Property Measurements for Various Fuels using a Micro Flow Reactor with a Controlled Temperature Profile. , 0, , . 	el Ignition Property Measurements for Va trolled Temperature Profile. , 0, , .	us Fuels using a Micro Flow Reactor with a	Ο