
Argiris Laskarakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3907520/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optical and electrical characterization of blended active materials for white OLEDs (WOLEDs). Materials Today: Proceedings, 2021, 37, A32-A38.	0.9	3
2	Surface, interface and electronic studies on anthracene derived polymeric thin films for OLED applications. Optical Materials, 2021, 117, 111145.	1.7	7
3	Optical and emission properties of terpolymer active materials for white OLEDs (WOLEDs). Materials Today: Proceedings, 2021, 37, A46-A53.	0.9	1
4	Morphological and structural comparison of TIPS-PEN:PS and neat TIPS-PEN films grown onto cPVP-patterned plastic substrates. Materials Today: Proceedings, 2021, 37, A1-A7.	0.9	1
5	Photophysical and Electro-Optical Properties of Copolymers Bearing Blue and Red Chromophores for Single-Layer White OLEDs. Nanomaterials, 2021, 11, 2629.	1.9	4
6	Organic Photovoltaics on Greenhouse Rooftops: Effects on Plant Growth. Materials Today: Proceedings, 2019, 19, 65-72.	0.9	37
7	Efficient combination of Roll-to-Roll compatible techniques towards the large area deposition of a polymer dielectric film and the solution-processing of an organic semiconductor for the field-effect transistors fabrication on plastic substrate. Organic Electronics, 2019, 73, 231-239.	1.4	21
8	Surface, interface and electronic properties of F8:F8BT polymeric thin films used for organic lightâ€emitting diode applications. Polymer International, 2018, 67, 691-699.	1.6	17
9	Plasmonic Organic Photovoltaics: Unraveling Plasmonic Enhancement for Realistic Cell Geometries. ACS Photonics, 2018, 5, 1440-1452.	3.2	27
10	Insights on the morphology of polymer donor:acceptor blends by optical metrology. Thin Solid Films, 2018, 648, 62-68.	0.8	4
11	Efficient flexible printed perovskite solar cells based on lead acetate precursor. Solar Energy, 2018, 176, 406-411.	2.9	16
12	In-Line Quality Control of Organic Thin Film Fabrication on Rigid and Flexible Substrates. Springer Series in Surface Sciences, 2018, , 437-458.	0.3	0
13	Lumped-element model of plasmonic solar cells. Solid-State Electronics, 2018, 147, 39-43.	0.8	3
14	Synthesis and Characterization of Ag Nanoparticles for Orthopaedic applications. Materials Today: Proceedings, 2017, 4, 6889-6900.	0.9	4
15	Ultra-Short Pulse Laser for Patterning High Quality Graphene Electrodes. Materials Today: Proceedings, 2017, 4, 5074-5081.	0.9	5
16	Perovskite solar cells from small scale spin coating process towards roll-to-roll printing: Optical and Morphological studies. Materials Today: Proceedings, 2017, 4, 5082-5089.	0.9	31
17	Drug delivery nanoplatform for orthopaedic-associated infections. Materials Today: Proceedings, 2017, 4, 6880-6888.	0.9	5
18	Insights on the Optical Properties of Poly(3,4-Ethylenedioxythiophene):Poly(styrenesulfonate) Formulations by Optical Metrology. Materials, 2017, 10, 959.	1.3	11

#	Article	IF	CITATIONS
19	Gravure Printed Organic Photovoltaic Modules Onto Flexible Substrates Consisting of a P3HT:PCBM Photoactive Blend1. Materials Today: Proceedings, 2016, 3, 746-757.	0.9	11
20	Organic transistors based on airbrushed small molecule-insulating polymer blends with mobilities exceeding 1 cm ² V ^{â^'1} s ^{â''1} . RSC Advances, 2016, 6, 97077-97083.	1.7	18
21	Achieving 6.7% Efficiency in P3HT/Indeneâ€C ₇₀ Bisadduct Solar Cells through the Control of Vertical Volume Fraction Distribution and Optimized Regioâ€Isomer Ratios. Advanced Electronic Materials, 2016, 2, 1600362.	2.6	7
22	Universal Compact Model for Organic Solar Cell. IEEE Transactions on Electron Devices, 2016, 63, 4053-4059.	1.6	5
23	A comprehensive study of the optical properties of emitting polymers for efficient flexible OLED devices. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2947-2953.	0.8	17
24	Molecular Orientation and Ultrafast Charge Transfer Dynamics Studies on the P3HT:PCBM Blend. Journal of Physical Chemistry C, 2016, 120, 25078-25082.	1.5	22
25	High mobility transistors based on electrospray-printed small-molecule/polymer semiconducting blends. Journal of Materials Chemistry C, 2016, 4, 3499-3507.	2.7	30
26	Organic Photovoltaic Cells based on Graphene Interfacial Anode Electrodes. Materials Today: Proceedings, 2016, 3, 788-795.	0.9	3
27	Improvement of Inverted OPV Performance by Enhancement of ZnO Layer Properties as an Electron Transfer Layer1. Materials Today: Proceedings, 2016, 3, 758-771.	0.9	8
28	Fully gravure printed organic photovoltaic modules: A straightforward process with a high potential for large scale production. Solar Energy Materials and Solar Cells, 2016, 144, 724-731.	3.0	73
29	Laser patterning for reel-to-reel production of organic photovoltaic (OPV) devices. Proceedings of SPIE, 2015, , .	0.8	Ο
30	Laser Patterning of smart Nanomaterials for Reel-to-Reel production of Organic Photovoltaic (OPV) Devices. Journal of Laser Micro Nanoengineering, 2015, 10, 195-201.	0.4	4
31	The effect of laser pulse duration and beam shape on the selective removal of novel thin film layers for flexible electronic devices. , 2015, , .		0
32	In-line monitoring and quality control of flexible organic electronic materials. , 2015, , 227-251.		2
33	Non-destructive optical characterization of phase separation in bulk heterojunction organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2014, 125, 190-197.	3.0	10
34	Optical investigations of the effect of solvent and thermal annealing on the optoelectronic properties of Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. Thin Solid Films, 2013, 541, 102-106.	0.8	27
35	In-line spectroscopic ellipsometry for the monitoring of the optical properties and quality of roll-to-roll printed nanolayers for organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 112, 144-156.	3.0	27
36	Key factors to improve the efficiency of roll-to-roll printed organic photovoltaics. Organic Electronics, 2013, 14, 1744-1748.	1.4	39

#	Article	IF	CITATIONS
37	Effect of process parameters on the morphology and nanostructure of roll-to-roll printed P3HT:PCBM thin films for organic photovoltaics. Solar Energy Materials and Solar Cells, 2013, 112, 36-46.	3.0	51
38	Spectroscopic Ellipsometry for Functional Nano-Layers of Flexible Organic Electronic Devices. , 2013, , 529-556.		1
39	Effects of buffer layer properties and annealing process on bulk heterojunction morphology and organic solar cell performance. Journal of Materials Chemistry, 2012, 22, 14624.	6.7	42
40	Effect of ion bombardment and hydrogen pressure during deposition on the optical properties of hydrogenated amorphous carbon thin films. Diamond and Related Materials, 2011, 20, 109-114.	1.8	6
41	Substrate treatment and drying conditions effect on the properties of roll-to-roll gravure printed PEDOT:PSS thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1556-1561.	1.7	27
42	Evolution of vertical phase separation in P3HT:PCBM thin films induced by thermal annealing. Materials Chemistry and Physics, 2011, 129, 1207-1213.	2.0	103
43	Ultra high barrier materials for encapsulation of flexible organic electronics. EPJ Applied Physics, 2010, 51, 33203.	0.3	19
44	Real-time optical modelling and investigation of inorganic nano-layer growth onto flexible polymeric substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2010, 166, 7-13.	1.7	7
45	In situ and real-time optical investigation of nitrogen plasma treatment of polycarbonate. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 460-465.	0.6	11
46	Optical properties of organic thin films deposited via organic vapour phase deposition. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1765-1771.	0.8	4
47	Growth mechanisms and thickness effect on the properties of Alâ€doped ZnO thin films grown on polymeric substrates. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1581-1585.	0.8	19
48	Study of the optical response of hybrid polymers with embedded inorganic nanoparticles for encapsulation of flexible organic electronics. Materials Chemistry and Physics, 2009, 115, 269-274.	2.0	11
49	Optical properties of hybrid polymers as barrier materials. Applied Surface Science, 2009, 255, 8023-8029.	3.1	16
50	Thin film and interface properties during ZnO deposition onto high-barrier hybrid/PET flexible substrates. Micron, 2009, 40, 130-134.	1.1	17
51	Deposition and characterization of PEDOT/ZnO layers onto PET substrates. Thin Solid Films, 2009, 517, 6409-6413.	0.8	19
52	On the influence of silicon oxide nanoparticles on the optical and surface properties of hybrid (inorganic–organic) barrier materials. Thin Solid Films, 2009, 517, 6275-6279.	0.8	10
53	Organic against inorganic electrodes grown onto polymer substrates for flexible organic electronics applications. Thin Solid Films, 2009, 518, 1245-1249.	0.8	18
54	Study of the growth of inorganic and organic electrodes onto polyethylene terephthalate substrates. Thin Solid Films, 2009, 518, 1124-1128.	0.8	3

#	Article	IF	CITATIONS
55	Fine tuning of PEDOT electronic properties using solvents. EPJ Applied Physics, 2009, 46, 12505.	0.3	20
56	Towards the optimization of materials and processes for flexible organic electronics devices. EPJ Applied Physics, 2009, 46, 12502.	0.3	28
57	In-situ and real-time monitoring of high barrier layers growth onto polymeric substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1300-1303.	0.8	6
58	Investigation of the optical properties of organic-inorganic hybrid polymers by IR to Vis-fUV spectroscopic ellipsometry. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1265-1269.	0.8	5
59	In-situ and real-time investigation of ZnO thin films growth onto rigid and flexible substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1366-1369.	0.8	7
60	Growth mechanisms of silicon oxide nanoâ€layers grown onto polymeric substrates for flexible electronics applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 3387-3391.	0.8	10
61	Growth, optical and nanostructural properties of magnetron sputtered ZnO thin films deposited on polymeric substrates. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1988-1992.	0.8	12
62	Surface modification of poly(ethylene terephthalate) polymeric films for flexible electronics applications. Thin Solid Films, 2008, 516, 1443-1448.	0.8	35
63	Optical and structural properties of ZnO for transparent electronics. Thin Solid Films, 2008, 516, 1345-1349.	0.8	74
64	AFM study of the thrombogenicity of carbon-based coatings for cardiovascular applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 152, 16-21.	1.7	21
65	Study of the electronic and vibrational properties of poly(ethylene terephthalate) and poly(ethylene) Tj ETQq1	1 0.784314 1.1	4 rgBT /Overlo
66	Haemocompatibility of amorphous hydrogenated carbon thin films, optical properties and adsorption mechanisms of blood plasma proteins. New Biotechnology, 2007, 24, 107-112.	2.7	43
67	Investigation of the optical anisotropy of PET and PEN films by VIS-FUV to IR spectroscopic ellipsometry. Applied Surface Science, 2006, 253, 52-56.	3.1	17
68	Characterization of Si nanocrystals into SiO2 matrix. Applied Surface Science, 2006, 253, 385-388.	3.1	5
69	Optical investigations of the effect of temperature and plasma conditions on the growth of sp3-bonded BN thin films. Surface and Coatings Technology, 2006, 200, 6449-6453.	2.2	2
70	On the optical anisotropy of poly(ethylene terephthalate) and poly(ethylene naphthalate) polymeric films by spectroscopic ellipsometry from visible-far ultraviolet to infrared spectral regions. Journal of Applied Physics, 2006, 99, 066101.	1.1	48
71	IR–FUV ellipsometry studies on the optical, electronic and vibrational properties of polymeric membranes. Thin Solid Films, 2004, 455-456, 283-287.	0.8	20
72	Mueller matrix spectroscopic ellipsometry: formulation and application. Thin Solid Films, 2004, 455-456, 43-49.	0.8	48

#	Article	IF	CITATIONS
73	FTIR and Vis–FUV real time spectroscopic ellipsometry studies of polymer surface modifications during ion beam bombardment. Nuclear Instruments & Methods in Physics Research B, 2004, 216, 131-136.	0.6	27
74	Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses. Superlattices and Microstructures, 2004, 36, 171-179.	1.4	51
75	Comparison of the nanomechanical and nanoscratch performance of antiscratch layers on organic lenses. Surface and Coatings Technology, 2004, 180-181, 357-361.	2.2	19
76	Real-time monitoring of silicon oxide deposition processes. Surface and Coatings Technology, 2004, 180-181, 655-658.	2.2	18
77	Nanoindentation studies of multilayer amorphous carbon films. Carbon, 2004, 42, 1133-1136.	5.4	61
78	A spectroscopic ellipsometry study of PET membranes from IR to Vis-FUV. Macromolecular Symposia, 2004, 205, 95-104.	0.4	8
79	Variation of nitrogen incorporation and bonding configuration of carbon nitride films studied by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopic ellipsometry. Diamond and Related Materials, 2002, 11, 1183-1187.	1.8	23
80	Spectroscopic ellipsometry studies on BN films from IR to vacuum UV energy region. Diamond and Related Materials, 2002, 11, 1281-1285.	1.8	14
81	In situ and real-time ellipsometry diagnostic techniques towards the monitoring of the bonding structure and growth kinetics: silicon oxide coatings. Surface and Coatings Technology, 2002, 151-152, 204-208.	2.2	8
82	A study on the bonding structure and mechanical properties of magnetron sputtered CNx thin films. Diamond and Related Materials, 2001, 10, 1179-1184.	1.8	24
83	Bonding structure of carbon nitride films by infrared ellipsometry. Physical Review B, 2001, 64, .	1.1	51
84	Magnetron sputtered carbon nitride: composition and chemical bonding of as-grown and post-annealed films studied with real-time and in situ diagnostic techniques. Surface and Coatings Technology, 2000, 125, 289-294.	2.2	14