Greg Perkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3907318/publications.pdf

Version: 2024-02-01

516215 642321 1,457 28 16 23 citations g-index h-index papers 29 29 29 1328 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass. Renewable and Sustainable Energy Reviews, 2018, 90, 292-315.	8.2	208
2	A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresource Technology, 2020, 312, 123596.	4.8	171
3	A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism. Bioresource Technology, 2020, 310, 123457.	4.8	130
4	Underground coal gasification $\hat{a} \in \text{``Part I'}$: Field demonstrations and process performance. Progress in Energy and Combustion Science, 2018, 67, 158-187.	15.8	123
5	Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses. Bioresource Technology, 2020, 299, 122557.	4.8	104
6	Underground coal gasification – Part II: Fundamental phenomena and modeling. Progress in Energy and Combustion Science, 2018, 67, 234-274.	15.8	82
7	A Mathematical Model for the Chemical Reaction of a Semi-infinite Block of Coal in Underground Coal Gasification. Energy & Samp; Fuels, 2005, 19, 1679-1692.	2.5	77
8	A Numerical Study of the Effects of Operating Conditions and Coal Properties on Cavity Growth in Underground Coal Gasification. Energy & Energy & 2006, 20, 596-608.	2.5	70
9	Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes. Renewable and Sustainable Energy Reviews, 2019, 115, 109400.	8.2	66
10	Techno-economic comparison of the levelised cost of electricity generation from solar PV and battery storage with solar PV and combustion of bio-crude using fast pyrolysis of biomass. Energy Conversion and Management, 2018, 171, 1573-1588.	4.4	64
11	Modelling of Heat and Mass Transport Phenomena and Chemical Reaction in Underground Coal Gasification. Chemical Engineering Research and Design, 2007, 85, 329-343.	2.7	62
12	Steady-State Model for Estimating Gas Production from Underground Coal Gasification. Energy & Energy & Fuels, 2008, 22, 3902-3914.	2.5	59
13	Self-sustaining smouldering combustion of waste: A review on applications, key parameters and potential resource recovery. Fuel Processing Technology, 2020, 205, 106425.	3.7	56
14	What Does the Success of Tesla Mean for the Future Dynamics in the Global Automobile Sector?. Management and Organization Review, 2018, 14, 471-480.	1.8	39
15	A critical review on the development and challenges of concentrated solar power technologies. Sustainable Energy Technologies and Assessments, 2021, 47, 101434.	1.7	34
16	Overview of underground coal gasification operations at Chinchilla, Australia. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3639-3646.	1.2	26
17	Considerations for oxidant and gasifying medium selection in underground coal gasification. Fuel Processing Technology, 2017, 165, 145-154.	3.7	15
18	Mathematical modelling of in situ combustion and gasification. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2018, 232, 56-73.	0.8	12

#	Article	IF	CITATIONS
19	Hybridization of ZSMâ $€5$ with Spinel Oxides for Biomass Vapour Upgrading. ChemCatChem, 2020, 12, 1403-1412.	1.8	11
20	Production of power using underground coal gasification. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 3653-3660.	1.2	10
21	Production of electricity and chemicals using gasification of municipal solid wastes., 2020,, 3-39.		7
22	Integration of biocrude production from fast pyrolysis of biomass with solar PV for dispatchable electricity production. Clean Energy, $2018, \ldots$	1.5	6
23	Unconventional Oil Production from Underground Coal Gasification and Gas to Liquids Technologies. , 2013, , .		5
24	Perspectives and economics of combining biomass liquefaction with solar PV for energy storage and electricity production. Energy Sources, Part B: Economics, Planning and Policy, 2021, 16, 118-134.	1.8	5
25	Advances in liquefaction for the production of hydrocarbon biofuels. , 2022, , 127-176.		5
26	Fischer-Tropsch synthesis to hydrocarbon biofuels: Present status and challenges involved. , 2022, , 77-96.		5
27	A 0-dimensional cavity growth submodel for use in reactor models of underground coal gasification. International Journal of Coal Science and Technology, 2019, 6, 334-353.	2.7	3
28	Coupling dominant surface submodels and complex physical process Computational Fluid Dynamics. ANZIAM Journal, 0, 45, 817.	0.0	1