Eduardo J Gudiña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3907093/publications.pdf Version: 2024-02-01

Εσιμαρίο Ι ΟμοιÃ+Α

#	Article	IF	CITATIONS
1	Potential therapeutic applications of biosurfactants. Trends in Pharmacological Sciences, 2013, 34, 667-675.	8.7	293
2	Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 2013, 111, 259-268.	6.4	287
3	Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids and Surfaces B: Biointerfaces, 2010, 76, 298-304.	5.0	223
4	Antimicrobial and antiadhesive properties of a biosurfactant isolated from <i>Lactobacillus paracasei</i> ssp. <i>paracasei</i> A20. Letters in Applied Microbiology, 2010, 50, 419-424.	2.2	203
5	Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 2015, 177, 87-93.	9.6	165
6	Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery. International Biodeterioration and Biodegradation, 2012, 68, 56-64.	3.9	164
7	Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 2015, 6, 59.	3.5	141
8	Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids and Surfaces B: Biointerfaces, 2012, 89, 167-174.	5.0	137
9	Biosurfactants Produced by Marine Microorganisms with Therapeutic Applications. Marine Drugs, 2016, 14, 38.	4.6	129
10	Valorization of agro-industrial wastes towards the production of rhamnolipids. Bioresource Technology, 2016, 212, 144-150.	9.6	127
11	Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. Journal of Hazardous Materials, 2013, 261, 106-113.	12.4	125
12	Antimicrobial and anti-adhesive activities of cell-bound biosurfactant from Lactobacillus agilis CCUG31450. RSC Advances, 2015, 5, 90960-90968.	3.6	101
13	The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of β-carotene into astaxanthin and other xanthophylls. Fungal Genetics and Biology, 2006, 43, 261-272.	2.1	92
14	Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express, 2014, 4, 40.	3.0	89
15	Conversion of β-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein?. Microbial Cell Factories, 2008, 7, 3.	4.0	82
16	Biosurfactant-Producing Lactobacilli: Screening, Production Profiles, and Effect of Medium Composition. Applied and Environmental Soil Science, 2011, 2011, 1-9.	1.7	74
17	Novel bioemulsifier produced by a Paenibacillus strain isolated from crude oil. Microbial Cell Factories, 2015, 14, 14.	4.0	57
18	New glycolipid biosurfactants produced by the yeast strain Wickerhamomyces anomalus CCMA 0358. Colloids and Surfaces B: Biointerfaces, 2017, 154, 373-382.	5.0	56

Eduardo J Gudiña

#	Article	IF	CITATIONS
19	Vineyard pruning waste as an alternative carbon source to produce novel biosurfactants by Lactobacillus paracasei. Journal of Industrial and Engineering Chemistry, 2017, 55, 40-49.	5.8	53
20	Improvement of biosurfactant production by Wickerhamomyces anomalus CCMA 0358 and its potential application in bioremediation. Journal of Hazardous Materials, 2018, 346, 152-158.	12.4	53
21	Partial Characterization of Biosurfactant from <i>Lactobacillus pentosus</i> and Comparison with Sodium Dodecyl Sulphate for the Bioremediation of Hydrocarbon Contaminated Soil. BioMed Research International, 2013, 2013, 1-6.	1.9	52
22	Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Scientific Reports, 2017, 7, 12907.	3.3	44
23	The yeast-like fungus Aureobasidium thailandense LB01 produces a new biosurfactant using olive oil mill wastewater as an inducer. Microbiological Research, 2017, 204, 40-47.	5.3	42
24	Agrobacterium tumefaciens-mediated transformation of the antitumor clavaric acid-producing basidiomycete Hypholoma sublateritium. Current Genetics, 2004, 46, 287-294.	1.7	41
25	Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin. Colloids and Surfaces B: Biointerfaces, 2017, 159, 750-758.	5.0	40
26	Sustainable Surfactin Production by Bacillus subtilis Using Crude Glycerol from Different Wastes. Molecules, 2021, 26, 3488.	3.8	35
27	Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions. Colloids and Surfaces B: Biointerfaces, 2016, 146, 498-506.	5.0	32
28	The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. New Biotechnology, 2019, 49, 144-150.	4.4	32
29	Characterization by Electrospray Ionization and Tandem Mass Spectrometry of Rhamnolipids Produced by Two <i>Pseudomonas Aeruginosa</i> Strains Isolated from Brazilian Crude Oil. European Journal of Mass Spectrometry, 2012, 18, 399-406.	1.0	22
30	Bacillus licheniformis: The unexplored alternative for the anaerobic production of lipopeptide biosurfactants?. Biotechnology Advances, 2022, 60, 108013.	11.7	21
31	Poly(dimethyl siloxane) surface modification with biosurfactants isolated from probiotic strains. Journal of Biomedical Materials Research - Part A, 2011, 98A, 535-543.	4.0	18
32	Metal-Biosurfactant Complexes Characterization: Binding, Self-Assembly and Interaction with Bovine Serum Albumin. International Journal of Molecular Sciences, 2019, 20, 2864.	4.1	18
33	Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. International Journal of Biological Macromolecules, 2021, 186, 788-799.	7.5	16
34	Sustainable Lipase Production by Diutina rugosa NRRL Y-95 Through a Combined Use of Agro-Industrial Residues as Feedstock. Applied Biochemistry and Biotechnology, 2021, 193, 589-605.	2.9	14
35	Biomolecular interactions of lysosomotropic surfactants with cytochrome c and its effect on the protein conformation: A biophysical approach. International Journal of Biological Macromolecules, 2019, 126, 1177-1185.	7.5	12
36	Zymomonas mobilis as an emerging biotechnological chassis for the production of industrially relevant compounds. Bioresources and Bioprocessing, 2021, 8, .	4.2	10

Eduardo J Gudiña

0

#	Article	IF	CITATIONS
37	Improved method for the extraction of high-quality DNA from lignocellulosic compost samples for metagenomic studies. Applied Microbiology and Biotechnology, 2021, 105, 8881-8893.	3.6	9
38	Synergistic effect of hen egg white lysozyme and lysosomotropic surfactants on cell viability and membrane permeability. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110598.	5.0	8
39	Rhamnolipids inhibit aflatoxins production in Aspergillus flavus by causing structural damages in the fungal hyphae and down-regulating the expression of their biosynthetic genes. International Journal of Food Microbiology, 2021, 348, 109207.	4.7	8
40	Multivariate analysis as a tool for selecting the vine pruning pretreatment towards the highest enzymatic hydrolysis yield. Biomass and Bioenergy, 2020, 140, 105653.	5.7	5
41	Esterase production by Aureobasidium pullulans URM 7059 in stirred tank and airlift bioreactors using residual biodiesel glycerol as substrate. Biochemical Engineering Journal, 2021, 168, 107954.	3.6	5
42	HC-0C-03: Biological Treatments to Improve the Quality of Heavy Crude Oils. Environmental Footprints and Eco-design of Products and Processes, 2017, , 337-351.	1.1	4
43	Biotech Green Approaches to Unravel the Potential of Residues into Valuable Products. Nanotechnology in the Life Sciences, 2020, , 97-150.	0.6	3
44	Microbial Surfactants: Alternative to Vegetable Oil Surfactants. Methods in Molecular Biology, 2019, 1995, 383-393.	0.9	2
45	Corksorb Enhances Alkane Degradation by Hydrocarbonoclastic Bacteria. Frontiers in Microbiology, 2021, 12, 618270.	3.5	1

46 Microbiology of Petroleum Reservoirs. , 2016, , 461-482.