Zinaida B Shifrina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/390700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dendrimers as Encapsulating, Stabilizing, or Directing Agents for Inorganic Nanoparticles. Chemical Reviews, 2011, 111, 5301-5344.	23.0	265
2	Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites. Chemical Reviews, 2020, 120, 1350-1396.	23.0	155
3	Poly(Phenylene-pyridyl) Dendrimers:  Synthesis and Templating of Metal Nanoparticles. Macromolecules, 2005, 38, 9920-9932.	2.2	86
4	Polyphenylenepyridyl Dendrons with Functional Periphery and Focal Points: Syntheses and Applications. Macromolecules, 2013, 46, 5890-5898.	2.2	80
5	Graphene and graphene-like materials in biomass conversion: paving the way to the future. Journal of Materials Chemistry A, 2017, 5, 25131-25143.	5.2	71
6	Simple and sensitive online detection of triacetone triperoxide explosive. Sensors and Actuators B: Chemical, 2010, 143, 561-566.	4.0	68
7	Branched Polyphenylenes by Repetitive Dielsâ^'Alder Cycloaddition. Macromolecules, 2000, 33, 3525-3529.	2.2	62
8	Ru-Containing Magnetically Recoverable Catalysts: A Sustainable Pathway from Cellulose to Ethylene and Propylene Glycols. ACS Applied Materials & Interfaces, 2016, 8, 21285-21293.	4.0	51
9	Water-Soluble Cationic Aromatic Dendrimers and Their Complexation with DNA. Macromolecules, 2009, 42, 9548-9560.	2.2	38
10	Magnetically Recoverable Catalysts: Beyond Magnetic Separation. Frontiers in Chemistry, 2018, 6, 298.	1.8	37
11	Proof of Concept: Magnetic Fixation of Dendron-Functionalized Iron Oxide Nanoparticles Containing Palladium Nanoparticles for Continuous-Flow Suzuki Coupling Reactions. ACS Applied Materials & Interfaces, 2015, 7, 27254-27261.	4.0	32
12	Disruption of Amyloid Prion Protein Aggregates by Cationic Pyridylphenylene Dendrimers. Macromolecular Bioscience, 2016, 16, 266-275.	2.1	32
13	The effect of size and concentration of nanoparticles on the glass transition temperature of polymer nanocomposites. RSC Advances, 2017, 7, 50113-50120.	1.7	28
14	Functionalization of Magnetic Nanoparticles with Amphiphilic Block Copolymers: Self-Assembled Thermoresponsive Submicrometer Particles. Langmuir, 2012, 28, 4142-4151.	1.6	27
15	Zinc-Containing Magnetic Oxides Stabilized by a Polymer: One Phase or Two?. ACS Applied Materials & Interfaces, 2016, 8, 891-899.	4.0	22
16	Hydrophobic Periphery Tails of Polyphenylenepyridyl Dendrons Control Nanoparticle Formation and Catalytic Properties. Chemistry of Materials, 2014, 26, 5654-5663.	3.2	20
17	Complexes between cationic pyridylphenylene dendrimers and ovine prion protein: do hydrophobic interactions matter?. RSC Advances, 2017, 7, 16565-16574.	1.7	20
18	Rigid aromatic dendrimers. Russian Chemical Reviews, 2007, 76, 767-783.	2.5	17

ZINAIDA B SHIFRINA

#	Article	IF	CITATIONS
19	Enhancing the Catalytic Activity of Zn-Containing Magnetic Oxides in a Methanol Synthesis: Identifying the Key Factors. ACS Applied Materials & Interfaces, 2017, 9, 2285-2294.	4.0	17
20	Pyridylphenylene dendrons immobilized on the surface of chemically modified magnetic silica as efficient stabilizing molecules of Pd species. Applied Surface Science, 2019, 488, 865-873.	3.1	17
21	Pd Catalyst Based on Hyperbranched Polypyridylphenylene Formed In Situ on Magnetic Silica Allows for Excellent Performance in Suzuki–Miyaura Reaction. ACS Applied Materials & Interfaces, 2020, 12, 22170-22178.	4.0	17
22	Nanoparticles in dendrimers: From synthesis to application. Nanotechnologies in Russia, 2009, 4, 576-608.	0.7	16
23	Metal-Ion Distribution and Oxygen Vacancies That Determine the Activity of Magnetically Recoverable Catalysts in Methanol Synthesis. ACS Applied Materials & Interfaces, 2017, 9, 34005-34014.	4.0	16
24	Efficient Furfuryl Alcohol Synthesis from Furfural over Magnetically Recoverable Catalysts: Does the Catalyst Stabilizing Medium Matter?. ChemistrySelect, 2017, 2, 5485-5491.	0.7	16
25	Metal oxide–zeolite composites in transformation of methanol to hydrocarbons: do iron oxide and nickel oxide matter?. RSC Advances, 2016, 6, 75166-75177.	1.7	14
26	Hydrogenation of bio-oil into higher alcohols over Ru/Fe3O4-SiO2 catalysts. Fuel Processing Technology, 2017, 167, 738-746.	3.7	14
27	Unusual Structural Morphology of Dendrimer/CdS Nanocomposites Revealed by Synchrotron X-ray Scattering. Journal of Physical Chemistry C, 2012, 116, 8069-8078.	1.5	12
28	Multicore Iron Oxide Mesocrystals Stabilized by a Poly(phenylenepyridyl) Dendron and Dendrimer: Role of the Dendron/Dendrimer Self-Assembly. Langmuir, 2014, 30, 8543-8550.	1.6	12
29	Dendrimers as Antiamyloid Agents. Pharmaceutics, 2022, 14, 760.	2.0	11
30	New monomers and polymers via Diels-Alder cycloaddition. Macromolecular Symposia, 2003, 199, 97-108.	0.4	10
31	Polyphenylene dendrimers with pyridine fragments. Doklady Chemistry, 2005, 400, 34-38.	0.2	10
32	Polyphenylenepyridyl dendrimers as stabilizing and controlling agents for CdS nanoparticle formation. Nanoscale, 2012, 4, 2378.	2.8	10
33	Aromatic polyimides with flexible and rigid chains. Russian Chemical Reviews, 1996, 65, 599-608.	2.5	9
34	Adsorption properties of pyridylphenylene dendrimers. RSC Advances, 2017, 7, 7870-7875.	1.7	9
35	Ferrocenyl-terminated polyphenylene-type "click―dendrimers as supports for efficient gold and palladium nanocatalysis. Dalton Transactions, 2021, 50, 11852-11860.	1.6	8
36	Influence of the Growing Flexible Shell on the Molecular Behavior of Hybrid Dendrimers. Macromolecules, 2020, 53, 9706-9716.	2.2	7

ZINAIDA B SHIFRINA

#	Article	IF	CITATIONS
37	"Click―Synthesis and Electrochemical Behavior of Ferrocenyl-Terminated Pyridylphenylene Dendrimers. Macromolecules, 2020, 53, 2735-2743.	2.2	7
38	Synthesis of CdS nanocrystals in the presence of a rigid aromatic dendrimer. Russian Chemical Bulletin, 2009, 58, 862-864.	0.4	6
39	Thermodynamic properties of pyridine-containing polyphenylene dendrimers of the first-fourth generations. Russian Chemical Bulletin, 2011, 60, 132-138.	0.4	6
40	Competitive reactions in dendriplex and polyplex solutions. European Polymer Journal, 2013, 49, 558-566.	2.6	6
41	Spontaneous formation of nanofilms under interaction of 4th generation pyrydylphenylene dendrimer with proteins. Polymer, 2018, 137, 186-194.	1.8	6
42	Promising anti-amyloid behavior of cationic pyridylphenylene dendrimers: Role of structural features and mechanism of action. European Polymer Journal, 2019, 116, 20-29.	2.6	6
43	Synthesis and electrochemical behaviour of rigid ferrocenyl-terminated pyridylphenylene dendrimers. Polymer, 2019, 173, 34-42.	1.8	6
44	Diels–Alder Hyperbranched Pyridylphenylene Polymer Fractions as Alternatives to Dendrimers. Macromolecules, 2019, 52, 1882-1891.	2.2	6
45	Conformational and hydrodynamic parameters of hyperbranched pyridylphenylene polymers. Polymer International, 2017, 66, 583-592.	1.6	5
46	Dendritic effect for immobilized pyridylphenylene dendrons in hosting catalytic Pd species: Positive or negative?. Reactive and Functional Polymers, 2020, 151, 104582.	2.0	5
47	Formation of soluble complexes of cationic polypyridylphenylene dendrimers with DNA. Polymer Science - Series C, 2010, 52, 105-110.	0.8	4
48	Cr–Containing Magnetic Oxides in a Methanol Synthesis: Does Cr Ion Distribution Matter?. ChemistrySelect, 2017, 2, 6269-6276.	0.7	4
49	Magnetically Recoverable Nanoparticulate Catalysts for Cross-Coupling Reactions: The Dendritic Support Influences the Catalytic Performance. Nanomaterials, 2021, 11, 3345.	1.9	3
50	Thermodynamic properties of poly(phenylene-pyridyl) dendrons of the second and the third generations. Journal of Chemical Thermodynamics, 2017, 105, 443-451.	1.0	2
51	Porosity of Rigid Dendrimers in Bulk: Interdendrimer Interactions and Functionality as Key Factors. Nanomaterials, 2021, 11, 2600.	1.9	2
52	The flexibility of periphery enhances the electrochemical reversibility of ferrocenyl-terminated polyphenylene dendrimers. Polymer, 2021, 228, 123929.	1.8	1
53	Thermodynamic Properties of the First-Generation Hybrid Dendrimer with "Carbosilane Core/Phenylene Shell―Structure. Entropy, 2021, 23, 1557.	1.1	1
54	Dendritic polyphenylene framework as a light-harvesting shell for highly emissive [2.2]Paracyclophane core. Polymer, 2021, , 124227.	1.8	0