Wenlong Tian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3906485/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Representative volume element for composites reinforced by spatially randomly distributed discontinuous fibers and its applications. Composite Structures, 2015, 131, 366-373.	3.1	103
2	Periodic boundary condition and its numerical implementation algorithm for the evaluation of effective mechanical properties of the composites with complicated micro-structures. Composites Part B: Engineering, 2019, 162, 1-10.	5.9	98
3	Numerical evaluation of effective elastic properties of composites reinforced by spatially randomly distributed short fibers with certain aspect ratio. Composite Structures, 2015, 131, 843-851.	3.1	77
4	Fabrication and mechanical properties of CNTs/Mg composites prepared by combining friction stir processing and ultrasonic assisted extrusion. Journal of Alloys and Compounds, 2017, 728, 282-288.	2.8	75
5	Chemical Sensing Systems that Utilize Soft Electronics on Thin Elastomeric Substrates with Open Cellular Designs. Advanced Functional Materials, 2017, 27, 1605476.	7.8	64
6	Numerical evaluation on mechanical properties of short-fiber-reinforced metal matrix composites: Two-step mean-field homogenization procedure. Composite Structures, 2016, 139, 96-103.	3.1	52
7	Numerical study of the effects of irregular pores on transverse mechanical properties of unidirectional composites. Composites Science and Technology, 2018, 159, 142-151.	3.8	51
8	Evaluation of the effect of PyC coating thickness on the mechanical properties of T700 carbon fiber tows. Applied Surface Science, 2019, 463, 310-321.	3.1	46
9	Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Composite Structures, 2016, 152, 408-417.	3.1	44
10	Numerical evaluation of the effect of pores on effective elastic properties of carbon/carbon composites. Composite Structures, 2018, 196, 108-116.	3.1	43
11	Numerical evaluation of the influence of porosity on bending properties of 2D carbon/carbon composites. Composites Part B: Engineering, 2018, 136, 72-80.	5.9	37
12	Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites. Computational Materials Science, 2014, 89, 6-11.	1.4	36
13	Influence of Ni-CNTs additions on the microstructure and mechanical properties of extruded Mg-9Al alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 101-109.	2.6	34
14	Numerical evaluation on the effective thermal conductivity of the composites with discontinuous inclusions: Periodic boundary condition and its numerical algorithm. International Journal of Heat and Mass Transfer, 2019, 134, 735-751.	2.5	29
15	Tensile and fatigue behavior of carbon fiber reinforced magnesium composite fabricated by liquid-solid extrusion following vacuum pressure infiltration. Journal of Alloys and Compounds, 2017, 721, 55-63.	2.8	27
16	Effect of fiber transverse isotropy on effective thermal conductivity of metal matrix composites reinforced by randomly distributed fibers. Composite Structures, 2016, 152, 637-644.	3.1	24
17	An advanced method for efficiently generating composite RVEs with specified particle orientation. Composites Science and Technology, 2021, 205, 108647.	3.8	21
18	An algorithm for generation of RVEs of composites with high particle volume fractions. Composites Science and Technology, 2021, 207, 108714.	3.8	18

Wenlong Tian

#	Article	IF	CITATIONS
19	A fractal model of effective mechanical properties of porous composites. Composites Science and Technology, 2021, 213, 108957.	3.8	18
20	Evaluation for elastic properties of metal matrix composites with randomly distributed fibers: Two-step mean-field homogenization procedure versus FE homogenization method. Journal of Alloys and Compounds, 2016, 658, 241-247.	2.8	17
21	Micro-mechanical model for the effective thermal conductivity of the multi-oriented inclusions reinforced composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 2020, 148, 119167.	2.5	17
22	Mean-field homogenization based approach to evaluate macroscopic coefficients of thermal expansion of composite materials. International Journal of Heat and Mass Transfer, 2016, 102, 1321-1333.	2.5	16
23	Potential of porous pyrolytic carbon for producing zero thermal expansion coefficient composites: A multi-scale numerical evaluation. Composite Structures, 2020, 235, 111819.	3.1	15
24	Interphase model for FE prediction of the effective thermal conductivity of the composites with imperfect interfaces. International Journal of Heat and Mass Transfer, 2019, 145, 118796.	2.5	12
25	Experimental and multi-scale numerical evaluations for effective mechanical properties of 2-D Cf/Mg composites. Composite Structures, 2018, 189, 1-8.	3.1	9
26	A new interpolative homogenization model for evaluation of the effective elasto-plastic responses of two-phase composites. Composite Structures, 2019, 210, 810-821.	3.1	9
27	Evaluation for interfacial fracture of fiber-reinforced pyrocarbon matrix composites by using a zero-thickness cohesive approach. Journal of Alloys and Compounds, 2020, 820, 153378.	2.8	9
28	New numerical algorithm for the periodic boundary condition for predicting the coefficients of thermal expansion of composites. Mechanics of Materials, 2021, 154, 103737.	1.7	9
29	Multi-scale and multi-step modeling of thermal conductivities of 3D braided composites. International Journal of Mechanical Sciences, 2022, 228, 107466.	3.6	9
30	Homogenization of transverse elastic properties of Cf/Mg composites at an elevated temperature and containing a small fraction of liquid phase. Composites Science and Technology, 2015, 117, 234-243.	3.8	7
31	Quantitative characterization of the fiber orientation variation in the Csf/Mg composites. Computational Materials Science, 2015, 98, 56-63.	1.4	4
32	Tool wear morphologies and mechanisms for cutting Cf/Mg composites. International Journal of Advanced Manufacturing Technology, 2016, 86, 613-619.	1.5	4
33	Effect of holding pressure on densification and mechanical properties of C _f /Mg composites. Materials Science and Technology, 2017, 33, 629-634.	0.8	4
34	Micro-mechanical model for predicting the elasto-plastic behavior of composites based on secant formulation method. Chinese Journal of Aeronautics, 2021, 34, 281-295.	2.8	3
35	Principal strain-induced fiber orientation evolution in the C _{sf} /Mg composites with a large deformation. Journal of Composite Materials, 2015, 49, 3229-3240.	1.2	2
36	Experimental and Numerical Evaluations for Failure Mechanism of Notched C _f /Mg Composite. Integrated Ferroelectrics, 2021, 219, 218-232.	0.3	0