
Robert B Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3905765/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oxidative Damage Is the Earliest Event in Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2001, 60, 759-767.	1.7	1,670
2	Mitochondrial Abnormalities in Alzheimer's Disease. Journal of Neuroscience, 2001, 21, 3017-3023.	3.6	1,179
3	Molecular basis of phenotypic variability in sporadc creudeldtâ€jakob disease. Annals of Neurology, 1996, 39, 767-778.	5.3	819
4	Molecular assessment of the potential transmissibilities of BSE and scrapie to humans. Nature, 1997, 388, 285-288.	27.8	259
5	Mitochondria: A therapeutic target in neurodegeneration. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 212-220.	3.8	244
6	pH-dependent Stability and Conformation of the Recombinant Human Prion Protein PrP(90–231). Journal of Biological Chemistry, 1997, 272, 27517-27520.	3.4	239
7	Chronic Wasting Disease of Elk: Transmissibility to Humans Examined by Transgenic Mouse Models. Journal of Neuroscience, 2005, 25, 7944-7949.	3.6	235
8	Fatal Familial Insomnia and Familial Creutzfeldtâ€Jakob Disease: Clinical, Pathological and Molecular Features. Brain Pathology, 1995, 5, 43-51.	4.1	192
9	The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase thatstimulates kinase activity. Experimental Cell Research, 2007, 313, 3658-3670.	2.6	192
10	Oxidative Stress and Redoxâ€Active Iron in Alzheimer's Disease. Annals of the New York Academy of Sciences, 2004, 1012, 179-182.	3.8	179
11	Familial Mutations and the Thermodynamic Stability of the Recombinant Human Prion Protein. Journal of Biological Chemistry, 1998, 273, 31048-31052.	3.4	176
12	Overexpression of Heme Oxygenase in Neuronal Cells, the Possible Interaction with Tau. Journal of Biological Chemistry, 2000, 275, 5395-5399.	3.4	171
13	Regional distribution of protease-resistant prion protein in fatal familial insomnia. Annals of Neurology, 1995, 38, 21-29.	5.3	165
14	Increased levels of oxidative stress markers detected in the brains of mice devoid of prion protein. Journal of Neurochemistry, 2001, 76, 565-572.	3.9	163
15	Proteasomal Degradation and N-terminal Protease Resistance of the Codon 145 Mutant Prion Protein. Journal of Biological Chemistry, 1999, 274, 23396-23404.	3.4	153
16	Neuronal cell cycle re-entry mediates Alzheimer disease-type changes. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2007, 1772, 467-472.	3.8	147
17	RNA metabolism: strategies for regulation in the heat shock response. Trends in Genetics, 1990, 6, 223-227.	6.7	142
18	Evidence of DNA damage in Alzheimer disease: phosphorylation of histone H2AX in astrocytes. Age, 2008, 30, 209-215.	3.0	133

#	Article	IF	CITATIONS
19	Cell-surface prion protein interacts with glycosaminoglycans. Biochemical Journal, 2002, 368, 81-90.	3.7	127
20	Effect of the D178N Mutation and the Codon 129 Polymorphism on the Metabolism of the Prion Protein. Journal of Biological Chemistry, 1996, 271, 12661-12668.	3.4	125
21	Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease. Neurochemistry International, 2009, 54, 84-88.	3.8	125
22	FLP-mediated DNA mobilization to specific target sites in Drosophila chromosomes. Nucleic Acids Research, 1997, 25, 3665-3671.	14.5	111
23	The Drosophila hsp70 message is rapidly degraded at normal temperatures and stabilized by heat shock. Gene, 1988, 72, 161-168.	2.2	104
24	Prion seeding activity and infectivity in skin samples from patients with sporadic Creutzfeldt-Jakob disease. Science Translational Medicine, 2017, 9, .	12.4	103
25	Alzheimer disease: Evidence for a central pathogenic role of iron-mediated reactive oxygen species. Journal of Alzheimer's Disease, 2004, 6, 165-169.	2.6	100
26	Molecular Pathology of Fatal Familial Insomnia. Brain Pathology, 1998, 8, 539-548.	4.1	98
27	Intercellular Transfer of the Cellular Prion Protein. Journal of Biological Chemistry, 2002, 277, 47671-47678.	3.4	95
28	Signal Transduction Cascades Associated with Oxidative Stress in Alzheimer's Disease. Journal of Alzheimer's Disease, 2007, 11, 143-152.	2.6	95
29	Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. BioMetals, 2003, 16, 77-81.	4.1	94
30	The Expression and Potential Function of Cellular Prion Protein in Human Lymphocytes. Cellular Immunology, 2001, 207, 49-58.	3.0	93
31	Prion Disease: A Loss of Antioxidant Function?. Biochemical and Biophysical Research Communications, 2000, 275, 249-252.	2.1	92
32	Selective Translation and Degradation of Heat-Shock Messenger RNAs in Drosophila. Enzyme, 1990, 44, 147-166.	0.7	89
33	Prion Protein Aggregation Reverted by Low Temperature in Transfected Cells Carrying a Prion Protein Gene Mutation. Journal of Biological Chemistry, 1997, 272, 28461-28470.	3.4	86
34	Prion Protein (PrP) Knock-Out Mice Show Altered Iron Metabolism: A Functional Role for PrP in Iron Uptake and Transport. PLoS ONE, 2009, 4, e6115.	2.5	85
35	The Neuronal Expression of MYC Causes a Neurodegenerative Phenotype in a Novel Transgenic Mouse. American Journal of Pathology, 2009, 174, 891-897.	3.8	82
36	Abnormal eye movements in Creutzfeldt-Jakob disease. Annals of Neurology, 1993, 34, 192-197.	5.3	78

#	Article	IF	CITATIONS
37	Synthesis in vitro of a seven amino acid peptide encoded in the leader RNA of Rous sarcoma virus. Journal of Molecular Biology, 1986, 190, 45-57.	4.2	75
38	Amyloid-β42 Interacts Mainly with Insoluble Prion Protein in the Alzheimer Brain. Journal of Biological Chemistry, 2011, 286, 15095-15105.	3.4	75
39	Effect of the E200K Mutation on Prion Protein Metabolism. American Journal of Pathology, 2000, 157, 613-622.	3.8	74
40	Oxidative Stress and Neuronal Adaptation in Alzheimer Disease: The Role of SAPK Pathways. Antioxidants and Redox Signaling, 2003, 5, 571-576.	5.4	67
41	Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus) Tj ETQq1	1 0.78431	4 rgBT /Ove
42	Prion Protein Glycosylation Is Sensitive to Redox Change. Journal of Biological Chemistry, 1999, 274, 34846-34850.	3.4	63
43	Induction of HO-1 and NOS in Doppel-Expressing Mice Devoid of PrP: Implications for Doppel Function. Molecular and Cellular Neurosciences, 2001, 17, 768-775.	2.2	62
44	Aberrant expression of metabotropic glutamate receptor 2 in the vulnerable neurons of Alzheimer's disease. Acta Neuropathologica, 2004, 107, 365-371.	7.7	60
45	Multigenerational maternal obesity increases the incidence of HCC in offspring via miR-27a-3p. Journal of Hepatology, 2020, 73, 603-615.	3.7	59
46	Normal Cellular Prior Protein Is Preferentially Expressed on Subpopulations of Murine Hemopoietic Cells. Journal of Immunology, 2001, 166, 3733-3742.	0.8	58
47	Impaired Neutrophil Function in <i>24p3</i> Null Mice Contributes to Enhanced Susceptibility to Bacterial Infections. Journal of Immunology, 2013, 190, 4692-4706.	0.8	58
48	Differential expression of cellular prion protein in mouse brain as detected with multiple anti-PrP monoclonal antibodies. Brain Research, 2001, 896, 118-129.	2.2	57
49	Neuroprotective properties of Bcl-w in Alzheimer disease. Journal of Neurochemistry, 2004, 89, 1233-1240.	3.9	54
50	Protein Disulfide Isomerase in Alzheimer Disease. Antioxidants and Redox Signaling, 2000, 2, 485-489.	5.4	53
51	Novel Differences between Two Human Prion Strains Revealed by Two-dimensional Gel Electrophoresis. Journal of Biological Chemistry, 2001, 276, 37284-37288.	3.4	53
52	Redox metals and oxidative abnormalities in human prion diseases. Acta Neuropathologica, 2005, 110, 232-238.	7.7	52
53	A metabolic basis for Alzheimer disease. Neurochemical Research, 2003, 28, 1549-1552.	3.3	51
54	Antigen–antibody dissociation in Alzheimer disease: a novel approach to diagnosis. Journal of Neurochemistry, 2008, 106, 1350-1356.	3.9	47

#	Article	IF	CITATIONS
55	Early preclinical detection of prions in the skin of prion-infected animals. Nature Communications, 2019, 10, 247.	12.8	46
56	The Thr183Ala Mutation, Not the Loss of the First Glycosylation Site, Alters the Physical Properties of the Prion Protein. Journal of Alzheimer's Disease, 2000, 2, 27-35.	2.6	42
57	Expression and Structural Characterization of the Recombinant Human Doppel Protein,. Biochemistry, 2000, 39, 13575-13583.	2.5	38
58	Spontaneous mutations in the prion protein gene causing transmissible spongiform encephalopathy. Annals of Neurology, 2002, 52, 355-359.	5.3	37
59	Chronic Wasting Disease of Elk and Deer and Creutzfeldt-Jakob Disease. Journal of Biological Chemistry, 2006, 281, 4199-4206.	3.4	37
60	Recombinant Human Prion Protein Inhibits Prion Propagation in vitro. Scientific Reports, 2013, 3, 2911.	3.3	27
61	Will Preventing Protein Aggregates Live Up to Its Promise as Prophylaxis Against Neurodegenerative Diseases?. Brain Pathology, 2003, 13, 630-638.	4.1	24
62	Ligand binding promotes prion protein aggregation – role of the octapeptide repeats. FEBS Journal, 2008, 275, 5564-5575.	4.7	24
63	Muscular G9a Regulates Muscle-Liver-Fat Axis by Musclin Under Overnutrition in Female Mice. Diabetes, 2020, 69, 2642-2654.	0.6	21
64	Altered cell-matrix associated ADAM proteins in Alzheimer disease. Journal of Neuroscience Research, 2000, 59, 680-684.	2.9	18
65	Characterization of the F198S prion protein mutation: Enhanced glycosylation and defective refolding. Journal of Alzheimer's Disease, 2005, 7, 159-171.	2.6	18
66	Lmo4â€resistin signaling contributes to adipose tissueâ€liver crosstalk upon weight cycling. FASEB Journal, 2020, 34, 4732-4748.	0.5	14
67	Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Archives of Biochemistry and Biophysics, 2021, 700, 108768.	3.0	10
68	A novel mechanism of phenotypic heterogeneity demonstrated by the effect of a polymorphism on a pathogenic mutation in the PRNP (prion protein gene). Molecular Neurobiology, 1994, 8, 99-103.	4.0	9
69	A FAMILY WITH OCULOLEPTOMENINGEAL AMYLOIDOSIS AND DEMENTIA HAS A MUTATION IN THE TRANSTHYRETIN GENE. Journal of Neuropathology and Experimental Neurology, 1995, 54, 413.	1.7	8
70	T-Tau and P-Tau in Brain and Blood from Natural and Experimental Prion Diseases. PLoS ONE, 2015, 10, e0143103.	2.5	8
71	In Vitro Seeding Activity of Glycoform-Deficient Prions from Variably Protease-Sensitive Prionopathy and Familial CJD Associated with PrPV180I Mutation. Molecular Neurobiology, 2019, 56, 5456-5469.	4.0	7
72	Antemortem diagnosis of variant Creutzfeldt-Jakob disease. Lancet, The, 1999, 353, 163-164.	13.7	5

#	Article	IF	CITATIONS
73	Bovine Spongiform Encephalopathy and Aquaculture. Journal of Alzheimer's Disease, 2008, 17, 277-279.	2.6	5
74	Characterization of Anchorless Human PrP With Q227X Stop Mutation Linked to Gerstmann-StrÃ ¤ ssler-Scheinker Syndrome In Vivo and In Vitro. Molecular Neurobiology, 2021, 58, 21-33.	4.0	4
75	New topics in familial prion diseases. Seminars in Virology, 1996, 7, 181-187.	3.9	3
76	Influence of Mabs on PrPSc Formation Using In Vitro and Cell-Free Systems. PLoS ONE, 2012, 7, e41626.	2.5	3
77	Quiescin-sulfhydryl oxidase inhibits prion formation in vitro. Aging, 2016, 8, 3419-3429.	3.1	2
78	You can take the Genome out of the Organism, but can you take the Organism out of the Environment?. Journal of Alzheimer's Disease, 2002, 4, 167-168.	2.6	0