Oscar Verho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3905644/publications.pdf

Version: 2024-02-01

43 papers

3,195 citations

201674 27 h-index 45 g-index

64 all docs

64 docs citations

64 times ranked 4612 citing authors

#	Article	IF	CITATIONS
1	Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews, 2014, 114, 11863-12001.	47.7	1,161
2	Chemoenzymatic Dynamic Kinetic Resolution: A Powerful Tool for the Preparation of Enantiomerically Pure Alcohols and Amines. Journal of the American Chemical Society, 2015, 137, 3996-4009.	13.7	324
3	Coâ€immobilization of an Enzyme and a Metal into the Compartments of Mesoporous Silica for Cooperative Tandem Catalysis: An Artificial Metalloenzyme. Angewandte Chemie - International Edition, 2013, 52, 14006-14010.	13.8	196
4	Artificial Photosynthesis: From Nanosecond Electron Transfer to Catalytic Water Oxidation. Accounts of Chemical Research, 2014, 47, 100-111.	15.6	182
5	Synthesis of a Bicyclic Azetidine with In Vivo Antimalarial Activity Enabled by Stereospecific, Directed C(sp ³)–H Arylation. Journal of the American Chemical Society, 2017, 139, 11300-11306.	13.7	104
6	Highly Dispersed Palladium Nanoparticles on Mesocellular Foam: An Efficient and Recyclable Heterogeneous Catalyst for Alcohol Oxidation. Chemistry - A European Journal, 2012, 18, 12202-12206.	3.3	80
7	Mild Deoxygenation of Aromatic Ketones and Aldehydes over Pd/C Using Polymethylhydrosiloxane as the Reducing Agent. Angewandte Chemie - International Edition, 2015, 54, 5122-5126.	13.8	80
8	Design of a Pd(0)-CalB CLEA Biohybrid Catalyst and Its Application in a One-Pot Cascade Reaction. ACS Catalysis, 2017, 7, 1601-1605.	11.2	64
9	Combined Heterogeneous Metal/Chiral Amine: Multiple Relay Catalysis for Versatile Ecoâ€Friendly Synthesis. Angewandte Chemie - International Edition, 2014, 53, 3447-3451.	13.8	60
10	Mild and Selective Hydrogenation of Nitro Compounds using Palladium Nanoparticles Supported on Aminoâ€Functionalized Mesocellular Foam. ChemCatChem, 2014, 6, 3153-3159.	3.7	55
11	Chemoenzymatic Dynamic Kinetic Resolution of Primary Amines Using a Recyclable Palladium Nanoparticle Catalyst Together with Lipases. Journal of Organic Chemistry, 2014, 79, 3747-3751.	3.2	54
12	A Two-Step Procedure for the Overall Transamidation of 8-Aminoquinoline Amides Proceeding via the Intermediate N-Acyl-Boc-Carbamates. Journal of Organic Chemistry, 2018, 83, 4464-4476.	3.2	54
13	Enantioselective Heterogeneous Synergistic Catalysis for Asymmetric Cascade Transformations. Advanced Synthesis and Catalysis, 2014, 356, 2485-2492.	4.3	49
14	Synergistic Effects of Stereochemistry and Appendages on the Performance Diversity of a Collection of Synthetic Compounds. Journal of the American Chemical Society, 2018, 140, 11784-11790.	13.7	47
15	Highly Enantioselective Cascade Transformations by Merging Heterogeneous Transition Metal Catalysis with Asymmetric Aminocatalysis. Scientific Reports, 2012, 2, 851.	3.3	42
16	Nanopalladium on Aminoâ€Functionalized Mesocellular Foam: An Efficient Catalyst for Suzuki Reactions and Transfer Hydrogenations. ChemCatChem, 2013, 5, 612-618.	3.7	40
17	Real-Time Biological Annotation of Synthetic Compounds. Journal of the American Chemical Society, 2016, 138, 8920-8927.	13.7	39
18	Stereospecific Palladium-Catalyzed C–H Arylation of Pyroglutamic Acid Derivatives at the C3 Position Enabled by 8-Aminoquinoline as a Directing Group. Organic Letters, 2017, 19, 4424-4427.	4.6	38

#	Article	IF	Citations
19	Mild and Selective Catalytic Hydrogenation of the C=C Bond in α,βâ€Unsaturated Carbonyl Compounds Using Supported Palladium Nanoparticles. Chemistry - A European Journal, 2016, 22, 7184-7189.	3.3	37
20	Efficient Palladium atalyzed Aminocarbonylation of Aryl Iodides Using Palladium Nanoparticles Dispersed on Siliceous Mesocellular Foam. Chemistry - A European Journal, 2014, 20, 5885-5889.	3.3	36
21	Nanopalladium on Aminoâ€Functionalized Mesocellular Foam as an Efficient and Recyclable Catalyst for the Selective Transfer Hydrogenation of Nitroarenes to Anilines. ChemCatChem, 2014, 6, 205-211.	3.7	35
22	The Impact of Ligand Carboxylates on Electrocatalyzed Water Oxidation. Accounts of Chemical Research, 2021, 54, 3326-3337.	15.6	35
23	Cycloisomerization of Acetylenic Acids to Î ³ -Alkylidene Lactones using a Palladium(II) Catalyst Supported on Amino-Functionalized Siliceous Mesocellular Foam. Journal of Organic Chemistry, 2014, 79, 1399-1405.	3.2	33
24	A General Suzuki Cross-Coupling Reaction of Heteroaromatics Catalyzed by Nanopalladium on Amino-Functionalized Siliceous Mesocellular Foam. Journal of Organic Chemistry, 2014, 79, 3946-3954.	3.2	31
25	Application of Pd Nanoparticles Supported on Mesoporous Hollow Silica Nanospheres for the Efficient and Selective Semihydrogenation of Alkynes. ChemCatChem, 2016, 8, 773-778.	3.7	30
26	CO Dissociation Mechanism in Racemization of Alcohols by a Cyclopentadienyl Ruthenium Dicarbonyl Catalyst. Journal of the American Chemical Society, 2011, 133, 2820-2823.	13.7	28
27	Discovery of 8-Membered Ring Sulfonamides as Inhibitors of Oncogenic Mutant Isocitrate Dehydrogenase 1. ACS Medicinal Chemistry Letters, 2016, 7, 944-949.	2.8	21
28	Mesoporous silica nanoparticles applied as a support for Pd and Au nanocatalysts in cycloisomerization reactions. APL Materials, 2014, 2, 113316.	5.1	20
29	Tuning of the Electronic Properties of a Cyclopentadienylruthenium Catalyst to Match Racemization of Electronâ€Rich and Electronâ€Deficient Alcohols. Chemistry - A European Journal, 2011, 17, 11216-11222.	3.3	17
30	Wellâ€Defined Palladium Nanoparticles Supported on Siliceous Mesocellular Foam as Heterogeneous Catalysts for the Oxidation of Water. Chemistry - A European Journal, 2015, 21, 5909-5915.	3.3	15
31	Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Catalysis Science and Technology, 2017, 7, 293-299.	4.1	13
32	Dispersed Gold Nanoparticles Supported in the Pores of Siliceous Mesocellular Foam: A Catalyst for Cycloisomerization of Alkynoic Acids to γâ€Alkylidene Lactones. European Journal of Organic Chemistry, 2015, 205, 2250-2255.	2.4	12
33	Evaluation of Fe and Ru Pincerâ€√ype Complexes as Catalysts for the Racemization of Secondary Benzylic Alcohols. Chemistry - A European Journal, 2016, 22, 11583-11586.	3.3	12
34	Copper Nanoparticles on Controlled Pore Glass and TEMPO for the Aerobic Oxidation of Alcohols. ChemNanoMat, 2018, 4, 71-75.	2.8	11
35	Synthesis of Elaborate Benzofuran-2-Carboxamide Derivatives through a Combination of 8-Aminoquinoline Directed C–H Arylation and Transamidation Chemistry. Molecules, 2020, 25, 361.	3.8	10
36	Application and Mechanistic Studies of a Waterâ€Oxidation Catalyst in Alcohol Oxidation by Employing Oxygenâ€Transfer Reagents. Chemistry - A European Journal, 2012, 18, 16947-16954.	3.3	8

#	Article	IF	CITATION
37	Palladium Nanoparticles Immobilized on an Aminopropylâ€functionalized Silicaâ€Magnetite Composite as a Recyclable Catalyst for Suzukiâ€Miyaura Reactions. ChemistrySelect, 2018, 3, 7970-7975.	1.5	7
38	Efficient 1,3â€Oxazolidinâ€2â€one Synthesis through Heterogeneous Pd ^{ll} â€Catalyzed Intramolecular Hydroamination of Propargylic Carbamates. Chemistry - A European Journal, 2019, 25, 6295-6299.	3.3	7
39	Investigation of the Deactivation and Reactivation Mechanism of a Heterogeneous Palladium(II) Catalyst in the Cycloisomerization of Acetylenic Acids by ⟨i⟩In Situ⟨/i⟩ XAS . ACS Catalysis, 2021, 11, 2999-3008.	11.2	6
40	Ruthenium containing molecular electrocatalyst on glassy carbon for electrochemical water splitting. Dalton Transactions, 2022, 51, 7957-7965.	3.3	6
41	Convenient Access to Chiral Cyclobutanes with Three Contiguous Stereocenters from Verbenone by Directed C(sp 3)â^'H arylation. Chemistry - A European Journal, 2019, 25, 5154-5157.	3.3	5
42	A Study of an 8-Aminoquinoline-Directed C(sp ²)â€"H Arylation Reaction on the Route to Chiral Cyclobutane Keto Acids from Myrtenal. Journal of Organic Chemistry, 2021, 86, 8527-8537.	3.2	2
43	Nanocatalysis Meets Biology. Topics in Organometallic Chemistry, 2020, , 243-278.	0.7	0