
Xufeng Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3905617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Towards Highâ€Voltage Aqueous Metalâ€Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Advanced Energy Materials, 2015, 5, 1400930.	10.2	932
2	Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 3353.	6.7	469
3	3D Porous MXene (Ti ₃ C ₂)/Reduced Graphene Oxide Hybrid Films for Advanced Lithium Storage. ACS Applied Materials & Interfaces, 2018, 10, 3634-3643.	4.0	288
4	A Comprehensive Understanding of Lithium–Sulfur Battery Technology. Advanced Functional Materials, 2019, 29, 1901730.	7.8	267
5	A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chemical Communications, 2010, 46, 2611.	2.2	240
6	Morphology-Dependent Electrochemical Performance of Zinc Hexacyanoferrate Cathode for Zinc-Ion Battery. Scientific Reports, 2015, 5, 18263.	1.6	211
7	Largeâ€Sized Fewâ€Layer Graphene Enables an Ultrafast and Longâ€Life Aluminumâ€Ion Battery. Advanced Energy Materials, 2017, 7, 1700034.	10.2	197
8	A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 7724.	6.7	193
9	Morphology-controlled solvothermal synthesis of LiFePO4 as a cathode material for lithium-ion batteries. Journal of Materials Chemistry, 2010, 20, 8086.	6.7	170
10	Microscale Lithium Metal Stored inside Cellular Graphene Scaffold toward Advanced Metallic Lithium Anodes. Advanced Energy Materials, 2018, 8, 1703152.	10.2	144
11	Mechanical and Thermal Properties of Epoxy Resin Nanocomposites Reinforced with Graphene Oxide. Polymer-Plastics Technology and Engineering, 2012, 51, 251-256.	1.9	143
12	Sulfur/Carbon Nanotube Composite Film as a Flexible Cathode for Lithium–Sulfur Batteries. Journal of Physical Chemistry C, 2013, 117, 21112-21119.	1.5	135
13	Morphology controlled synthesis and modification of high-performance LiMnPO4 cathode materials for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 21144.	6.7	90
14	Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nature Communications, 2016, 7, 11982.	5.8	90
15	Graphene nested porous carbon current collector for lithium metal anode with ultrahigh areal capacity. Energy Storage Materials, 2018, 15, 266-273.	9.5	77
16	Synthesis and electrochemical properties of layered lithium transition metal oxides. Journal of Materials Chemistry, 2011, 21, 2544-2549.	6.7	74
17	Metal etching method for preparing porous graphene as high performance anode material for lithium-ion batteries. Carbon, 2015, 89, 41-46.	5.4	73
18	Freestanding bacterial cellulose-graphene oxide composite membranes with high mechanical strength for selective ion permeation. Scientific Reports, 2016, 6, 33185.	1.6	73

XUFENG ZHOU

#	Article	IF	CITATIONS
19	Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene. Advanced Materials, 2017, 29, 1604453.	11.1	72
20	Distinguishing thermal lens effect from electronic third-order nonlinear self-phase modulation in liquid suspensions of 2D nanomaterials. Nanoscale, 2017, 9, 3547-3554.	2.8	60
21	Graphene wrapped silicon suboxides anodes with suppressed Li-uptake behavior enabled superior cycling stability. Energy Storage Materials, 2021, 35, 317-326.	9.5	58
22	Designed synthesis of LiMn ₂ O ₄ microspheres with adjustable hollow structures for lithium-ion battery applications. Journal of Materials Chemistry A, 2013, 1, 837-842.	5.2	56
23	Two-Dimensional Porous Micro/Nano Metal Oxides Templated by Graphene Oxide. ACS Applied Materials & Interfaces, 2015, 7, 11984-11990.	4.0	54
24	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg ^{–1} Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123.	8.8	53
25	Localized concentration reversal of lithium during intercalation into nanoparticles. Science Advances, 2018, 4, eaao2608.	4.7	50
26	Graphene network nested Cu foam for reducing size of lithium metal towards stable metallic lithium anode. Energy Storage Materials, 2019, 21, 107-114.	9.5	46
27	Highly Reversible Li Plating Confined in Three-Dimensional Interconnected Microchannels toward High-Rate and Stable Metallic Lithium Anodes. ACS Applied Materials & Interfaces, 2018, 10, 20387-20395.	4.0	42
28	Niobium carbide/reduced graphene oxide hybrid porous aerogel as high capacity and longâ€life anode material for Liâ€ion batteries. International Journal of Energy Research, 2019, 43, 4995-5003.	2.2	40
29	Nitrogenâ€Doped Graphene Nanoscroll Foam with High Diffusion Rate and Binding Affinity for Removal of Organic Pollutants. Small, 2017, 13, 1603779.	5.2	36
30	Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material. Advanced Functional Materials, 2018, 28, 1805255.	7.8	33
31	Attapulgite nanofibers and graphene oxide composite membrane for high-performance molecular separation. Journal of Colloid and Interface Science, 2019, 545, 276-281.	5.0	33
32	Graphene Modified Polyanilineâ€Hydrogel Based Stretchable Supercapacitor with High Capacitance and Excellent Stretching Stability. ChemSusChem, 2021, 14, 938-945.	3.6	33
33	A bifunctional hierarchical porous carbon network integrated with an in situ formed ultrathin graphene shell for stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 13674-13682.	5.2	30
34	Hydrothermal self-assembly of graphene foams with controllable pore size. RSC Advances, 2016, 6, 20843-20849.	1.7	29
35	Epoxy composites filled with one-dimensional SiC nanowires–two-dimensional graphene nanoplatelets hybrid nanofillers. RSC Advances, 2014, 4, 59409-59417.	1.7	26
36	Ordered self-assembly of amphipathic graphene nanosheets into three-dimensional layered architectures. Nanoscale, 2016, 8, 197-203.	2.8	26

XUFENG ZHOU

#	Article	IF	CITATIONS
37	Oriented Arrangement: The Origin of Versatility for Porous Graphene Materials. Small, 2017, 13, 1701231.	5.2	26
38	Ultrasmall Co ₃ O ₄ Nanoparticles Confined in P, N-Doped Carbon Matrices for High-Performance Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 9225-9232.	1.5	25
39	TiO ₂ (B)–CNT–graphene ternary composite anode material for lithium ion batteries. RSC Advances, 2015, 5, 22449-22454.	1.7	22
40	A compressible and hierarchical porous graphene/Co composite aerogel for lithium-ion batteries with high gravimetric/volumetric capacity. Journal of Materials Chemistry A, 2016, 4, 6021-6028.	5.2	22
41	Hierarchical porous MnO/graphene composite aerogel as high-performance anode material for lithium ion batteries. RSC Advances, 2017, 7, 15857-15863.	1.7	22
42	Lithium/Graphene Composite Anode with 3D Structural LiF Protection Layer for High-Performance Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 2871-2880.	4.0	22
43	Robust and durable flexible micro-supercapacitors enabled by graphene nanoscrolls. Chemical Engineering Journal, 2021, 405, 127009.	6.6	21
44	A chemical lithiation induced Li _{4.4} Sn lithiophilic layer for anode-free lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 9670-9679.	5.2	20
45	Graphene/Sulfur Composites with a Foam‣ike Porous Architecture and Controllable Pore Size for High Performance Lithium–Sulfur Batteries. ChemNanoMat, 2016, 2, 952-958.	1.5	19
46	Regulating capillary pressure to achieve ultralow areal mass loading metallic lithium anodes. Energy Storage Materials, 2019, 23, 693-700.	9.5	19
47	All graphene electrode for highâ€performance asymmetric supercapacitor. International Journal of Energy Research, 2020, 44, 1244-1255.	2.2	19
48	Mg ₂ SiO ₄ /Si-Coated Disproportionated SiO Composite Anodes with High Initial Coulombic Efficiency for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 15337-15345.	4.0	18
49	Nano-channel-based physical and chemical synergic regulation for dendrite-free lithium plating. Nano Research, 2021, 14, 3585-3597.	5.8	17
50	Graphene Flakes: Orientation Control of Graphene Flakes by Magnetic Field: Broad Device Applications of Macroscopically Aligned Graphene (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	11.1	15
51	Flexible asymmetric microsupercapacitor with high energy density based on all-graphene electrode system. Journal of Materials Science, 2020, 55, 309-318.	1.7	15
52	Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries. Nanomaterials, 2015, 5, 1481-1492.	1.9	14
53	Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23584-23591.	4.0	14
54	Scalable fabrication of a large-area lithium/graphene anode towards a long-life 350 W h kg ^{â^'1} lithium metal pouch cell. Journal of Materials Chemistry A, 2021, 9, 25558-25566.	5.2	14

XUFENG ZHOU

#	Article	IF	CITATIONS
55	Highly Deformable Graphene/Poly(3,4-ethylenedioxythiophene):Poly(styrene Sulfonate) Hydrogel Composite Film for Stretchable Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7277-7286.	2.5	13
56	Solvent evaporation induced self-assembly of graphene foam for thermally conductive polymers. RSC Advances, 2017, 7, 15469-15474.	1.7	12
57	Depressing the irreversible reactions on a three-dimensional interface towards a high-areal capacity lithium metal anode. Journal of Materials Chemistry A, 2019, 7, 6267-6274.	5.2	11
58	Photoacoustic identification of laser-induced microbubbles as light scattering centers for optical limiting in a liquid suspension of graphene nanosheets. Nanoscale, 2020, 12, 7109-7115.	2.8	11
59	<i>In situ</i> preparation of Fe ₃ O ₄ in a carbon hybrid of graphene nanoscrolls and carbon nanotubes as high performance anode material for lithium-ion batteries. Nanotechnology, 2017, 28, 465401.	1.3	10
60	Direct probing of density of states of reduced graphene oxides in a wide voltage range by tunneling junction. Applied Physics Letters, 2012, 101, .	1.5	7
61	Conformal Coating of a Carbon Film on 3D Hosts toward Stable Lithium Anodes. ACS Applied Energy Materials, 2021, 4, 7288-7297.	2.5	7
62	Porous Graphene‣ike Materials Prepared from Hollow Carbonaceous Microspheres for Supercapacitors. ChemNanoMat, 2015, 1, 422-429.	1.5	6
63	Seamlessly integrated alloy-polymer interphase for high-rate and long-life lithium metal anodes. Materials Today Energy, 2022, 26, 100988.	2.5	5
64	Graphene Sheets: Planar Alignment of Graphene Sheets by a Rotating Magnetic Field for Full Exploitation of Graphene as a 2D Material (Adv. Funct. Mater. 46/2018). Advanced Functional Materials, 2018, 28, 1870330.	7.8	3
65	High Li-Ion Conductivity Artificial Interface Enabled by Li-Grafted Graphene Oxide for Stable Li Metal Pouch Cell. ACS Applied Materials & Interfaces, 2021, 13, 29500-29510.	4.0	3
66	Patterning of graphene microscale structures using electrohydrodynamic atomisation deposition of photoresist moulds. Micro and Nano Letters, 2014, 9, 136-140.	0.6	2
67	Laser-induced dynamic alignment and nonlinear-like optical transmission in liquid suspensions of 2D atomically thin nanomaterials. Optics Express, 2021, 29, 36389.	1.7	2