List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3905514/publications.pdf Version: 2024-02-01

		3151	2825
322	42,891	92	191
papers	citations	h-index	g-index
372	372	372	39674
all docs	docs citations	times ranked	citing authors

ΔΙΙΔΝΙΙΕνέν

#	Article	IF	CITATIONS
1	Variant of <i>TREM2</i> Associated with the Risk of Alzheimer's Disease. New England Journal of Medicine, 2013, 368, 107-116.	13.9	2,085
2	Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nature Genetics, 2019, 51, 414-430.	9.4	1,962
3	Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (Substantia innominata), and hypothalamus in the rhesus monkey. Journal of Comparative Neurology, 1983, 214, 170-197.	0.9	1,868
4	Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer's disease. Nature Genetics, 2011, 43, 436-441.	9.4	1,676
5	A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction. Science, 2007, 316, 1491-1493.	6.0	1,485
6	Familial Alzheimer's Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo. Neuron, 1996, 17, 1005-1013.	3.8	1,471
7	Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of Neurology, 1995, 38, 73-84.	2.8	1,356
8	Analysis of shared heritability in common disorders of the brain. Science, 2018, 360, .	6.0	1,085
9	Endoproteolysis of Presenilin 1 and Accumulation of Processed Derivatives In Vivo. Neuron, 1996, 17, 181-190.	3.8	1,054
10	Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain, 2019, 142, 1503-1527.	3.7	873
11	Rare coding variants in PLCC2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease. Nature Genetics, 2017, 49, 1373-1384.	9.4	783
12	Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nature Medicine, 1996, 2, 699-703.	15.2	686
13	The origins of cholinergic and other subcortical afferents to the thalamus in the rat. Journal of Comparative Neurology, 1987, 262, 105-124.	0.9	558
14	Large-scale proteomic analysis of Alzheimer's disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nature Medicine, 2020, 26, 769-780.	15.2	547
15	Dopamine Axon Varicosities in the Prelimbic Division of the Rat Prefrontal Cortex Exhibit Sparse Immunoreactivity for the Dopamine Transporter. Journal of Neuroscience, 1998, 18, 2697-2708.	1.7	516
16	Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nature Genetics, 2010, 42, 234-239.	9.4	479
17	Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sciences, 1993, 52, 441-448.	2.0	397
18	Activation of Metabotropic Glutamate Receptor 5 Has Direct Excitatory Effects and Potentiates NMDA Receptor Currents in Neurons of the Subthalamic Nucleus. Journal of Neuroscience, 2000, 20, 7871-7879.	1.7	391

#	Article	IF	CITATIONS
19	A Multi-network Approach Identifies Protein-Specific Co-expression in Asymptomatic and Symptomatic Alzheimer's Disease. Cell Systems, 2017, 4, 60-72.e4.	2.9	381
20	Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer's disease. Nature Medicine, 2014, 20, 1254-1262.	15.2	367
21	Evidence for brain glucose dysregulation in Alzheimer's disease. Alzheimer's and Dementia, 2018, 14, 318-329.	0.4	320
22	The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. Scientific Data, 2018, 5, 180185.	2.4	320
23	Dopamine transporters and neuronal injury. Trends in Pharmacological Sciences, 1999, 20, 424-429.	4.0	313
24	Functional Interaction between Monoamine Plasma Membrane Transporters and the Synaptic PDZ Domain–Containing Protein PICK1. Neuron, 2001, 30, 121-134.	3.8	294
25	Loss-of-function variants in ABCA7 confer risk of Alzheimer's disease. Nature Genetics, 2015, 47, 445-447.	9.4	283
26	Immunocytochemical localization of the dopamine transporter in human brain. , 1999, 409, 38-56.		282
27	Characterization of Central Inhibitory Muscarinic Autoreceptors by the Use of Muscarinic Acetylcholine Receptor Knock-Out Mice. Journal of Neuroscience, 2002, 22, 1709-1717.	1.7	280
28	Cholinergic and non-cholinergic septohippocampal pathways. Neuroscience Letters, 1985, 54, 45-52.	1.0	273
29	U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16562-16567.	3.3	268
30	Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. Journal of Comparative Neurology, 1998, 401, 253-265.	0.9	267
31	Proteomic Characterization of Postmortem Amyloid Plaques Isolated by Laser Capture Microdissection. Journal of Biological Chemistry, 2004, 279, 37061-37068.	1.6	267
32	Identification and therapeutic modulation of a pro-inflammatory subset of disease-associated-microglia in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 24.	4.4	267
33	The Lipoprotein Receptor LR11 Regulates Amyloid beta Production and Amyloid Precursor Protein Traffic in Endosomal Compartments. Journal of Neuroscience, 2006, 26, 1596-1603.	1.7	253
34	Dopaminergic Neurons Intrinsic to the Primate Striatum. Journal of Neuroscience, 1997, 17, 6761-6768.	1.7	244
35	Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Progress in Brain Research, 2004, 145, 59-66.	0.9	243
36	Biochemical Characterization and Localization of a Non-N-Methyl-D-Aspartate Glutamate Receptor in Rat Brain. Journal of Neurochemistry, 1992, 58, 1118-1126.	2.1	237

#	Article	IF	CITATIONS
37	Microengineered human blood–brain barrier platform for understanding nanoparticle transport mechanisms. Nature Communications, 2020, 11, 175.	5.8	236
38	Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. Journal of Comparative Neurology, 1999, 411, 693-704.	0.9	235
39	Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. Journal of Comparative Neurology, 1997, 388, 211-227.	0.9	233
40	Novel Selective Allosteric Activator of the M ₁ Muscarinic Acetylcholine Receptor Regulates Amyloid Processing and Produces Antipsychotic-Like Activity in Rats. Journal of Neuroscience, 2008, 28, 10422-10433.	1.7	219
41	A Selective Allosteric Potentiator of the M ₁ Muscarinic Acetylcholine Receptor Increases Activity of Medial Prefrontal Cortical Neurons and Restores Impairments in Reversal Learning. Journal of Neuroscience, 2009, 29, 14271-14286.	1.7	217
42	Variants with large effects on blood lipids and the role of cholesterol and triglycerides in coronary disease. Nature Genetics, 2016, 48, 634-639.	9.4	214
43	Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease. Nature Communications, 2015, 6, 8762.	5.8	210
44	RGS2 Binds Directly and Selectively to the M1 Muscarinic Acetylcholine Receptor Third Intracellular Loop to Modulate Gq/11α Signaling. Journal of Biological Chemistry, 2004, 279, 21248-21256.	1.6	206
45	Vesicular Localization and Activity-Dependent Trafficking of Presynaptic Choline Transporters. Journal of Neuroscience, 2003, 23, 9697-9709.	1.7	202
46	Large-scale deep multi-layer analysis of Alzheimer's disease brain reveals strong proteomic disease-related changes not observed at the RNA level. Nature Neuroscience, 2022, 25, 213-225.	7.1	202
47	Meta-Analysis of the Alzheimer's Disease Human Brain Transcriptome and Functional Dissection in Mouse Models. Cell Reports, 2020, 32, 107908.	2.9	199
48	Evidence for a role of the rare p.A152T variant in MAPT in increasing the risk for FTD-spectrum and Alzheimer's diseases. Human Molecular Genetics, 2012, 21, 3500-3512.	1.4	198
49	Dopamine D5 receptor immunolocalization in rat and monkey brain. Synapse, 2000, 37, 125-145.	0.6	197
50	Differential Regulation of Molecular Subtypes of Muscarinic Receptors in Alzheimer's Disease. Journal of Neurochemistry, 1995, 64, 1888-1891.	2.1	195
51	Autosomal Recessive Causes Likely in Early-Onset Alzheimer Disease. Archives of Neurology, 2012, 69, 59.	4.9	193
52	Immunochemical analysis of dopamine transporter protein in Parkinson's disease. Annals of Neurology, 1997, 41, 530-539.	2.8	190
53	Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease. Science Advances, 2020, 6, .	4.7	186
54	Global quantitative analysis of the human brain proteome in Alzheimer's and Parkinson's Disease. Scientific Data, 2018, 5, 180036.	2.4	179

#	Article	IF	CITATIONS
55	Deep proteomic network analysis of Alzheimer's disease brain reveals alterations in RNA binding proteins and RNA splicing associated with disease. Molecular Neurodegeneration, 2018, 13, 52.	4.4	178
56	Immunochemical Analysis of Vesicular Monoamine Transporter (VMAT2) Protein in Parkinson's Disease. Experimental Neurology, 1999, 156, 138-148.	2.0	174
57	Elevated Serum Pesticide Levels and Risk for Alzheimer Disease. JAMA Neurology, 2014, 71, 284.	4.5	173
58	Ageâ€related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. Journal of Comparative Neurology, 1998, 401, 253-265.	0.9	173
59	Tau Pathology in a Family with Dementia and a P301L Mutation in Tau. Journal of Neuropathology and Experimental Neurology, 1999, 58, 335-345.	0.9	170
60	Effects of Multiple Genetic Loci on Age at Onset in Late-Onset Alzheimer Disease. JAMA Neurology, 2014, 71, 1394.	4.5	166
61	A Meta-Analysis of Alzheimer's Disease Incidence and Prevalence Comparing African-Americans and Caucasians. Journal of Alzheimer's Disease, 2016, 50, 71-76.	1.2	165
62	Striatal dopamine, dopamine transporter, and vesicular monoamine transporter in chronic cocaine users. Annals of Neurology, 1996, 40, 428-439.	2.8	161
63	Light and Electron Microscopic Localization of Presenilin-1 in Primate Brain. Journal of Neuroscience, 1997, 17, 1971-1980.	1.7	158
64	Integrating human brain proteomes with genome-wide association data implicates new proteins in Alzheimer's disease pathogenesis. Nature Genetics, 2021, 53, 143-146.	9.4	158
65	Mild cognitive impairment: An opportunity to identify patients at high risk for progression to Alzheimer's disease. Clinical Therapeutics, 2006, 28, 991-1001.	1.1	156
66	Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. Journal of Comparative Neurology, 1999, 407, 33-46.	0.9	152
67	Polyubiquitin Linkage Profiles in Three Models of Proteolytic Stress Suggest the Etiology of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 10457-10465.	1.6	151
68	Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. , 1997, 27, 357-366.		149
69	Increased MPTP Neurotoxicity in Vesicular Monoamine Transporter 2 Heterozygote Knockout Mice. Journal of Neurochemistry, 1998, 70, 1973-1978.	2.1	148
70	A Subpopulation of Neuronal M ₄ Muscarinic Acetylcholine Receptors Plays a Critical Role in Modulating Dopamine-Dependent Behaviors. Journal of Neuroscience, 2010, 30, 2396-2405.	1.7	147
71	Novel late-onset Alzheimer disease loci variants associate with brain gene expression. Neurology, 2012, 79, 221-228.	1.5	144
72	Large-scale proteomic analysis of human brain identifies proteins associated with cognitive trajectory in advanced age. Nature Communications, 2019, 10, 1619.	5.8	144

#	Article	IF	CITATIONS
73	Novel Alzheimer Disease Risk Loci and Pathways in African American Individuals Using the African Genome Resources Panel. JAMA Neurology, 2021, 78, 102.	4.5	144
74	A proteomic network approach across the <scp>ALS</scp> ― <scp>FTD</scp> disease spectrum resolves clinical phenotypes and genetic vulnerability in human brain. EMBO Molecular Medicine, 2018, 10, 48-62.	3.3	142
75	Hyperaccumulation of FAD-linked presenilin 1 variants in vivo. Nature Medicine, 1997, 3, 756-760.	15.2	140
76	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. , 1999, 415, 266-284.		138
77	Variant <i>ASGR1</i> Associated with a Reduced Risk of Coronary Artery Disease. New England Journal of Medicine, 2016, 374, 2131-2141.	13.9	137
78	Choline acetyltransferase immunoreactivity in the rat thalamus. Journal of Comparative Neurology, 1987, 257, 317-332.	0.9	136
79	Rab11a and Myosin Vb Regulate Recycling of the M ₄ Muscarinic Acetylcholine Receptor. Journal of Neuroscience, 2002, 22, 9776-9784.	1.7	135
80	Evaluation of Muscarinic Agonist-Induced Analgesia in Muscarinic Acetylcholine Receptor Knockout Mice. Molecular Pharmacology, 2002, 62, 1084-1093.	1.0	133
81	Activation of Group II Metabotropic Glutamate Receptors Inhibits Synaptic Excitation of the Substantia Nigra Pars Reticulata. Journal of Neuroscience, 2000, 20, 3085-3094.	1.7	130
82	TREM2 is associated with increased risk for Alzheimer's disease in African Americans. Molecular Neurodegeneration, 2015, 10, 19.	4.4	130
83	Alterations in Glutamate Transporter Protein Levels in Kindlingâ€Induced Epilepsy. Journal of Neurochemistry, 1997, 68, 1564-1570.	2.1	124
84	Targeting norepinephrine in mild cognitive impairment and Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 21.	3.0	124
85	TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathologica, 2014, 127, 407-418.	3.9	123
86	Light and electron microscopic study of m2 muscarinic acetylcholine receptor in the basal forebrain of the rat. Journal of Comparative Neurology, 1995, 351, 339-356.	0.9	121
87	Loss of LR11/SORLA Enhances Early Pathology in a Mouse Model of Amyloidosis: Evidence for a Proximal Role in Alzheimer's Disease. Journal of Neuroscience, 2008, 28, 12877-12886.	1.7	121
88	Pharmacologic Inhibition of ROCK2 Suppresses Amyloid-β Production in an Alzheimer's Disease Mouse Model. Journal of Neuroscience, 2013, 33, 19086-19098.	1.7	118
89	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer's Disease. Cell Reports, 2019, 29, 301-316.e10.	2.9	118
90	Conserved brain myelination networks are altered in Alzheimer's and other neurodegenerative diseases. Alzheimer's and Dementia, 2018, 14, 352-366.	0.4	116

#	Article	IF	CITATIONS
91	Simultaneous imaging of locus coeruleus and substantia nigra with a quantitative neuromelanin MRI approach. Magnetic Resonance Imaging, 2014, 32, 1301-1306.	1.0	115
92	Eye Tracking During a Visual Paired Comparison Task as a Predictor of Early Dementia. American Journal of Alzheimer's Disease and Other Dementias, 2009, 24, 258-266.	0.9	113
93	Identification of evolutionarily conserved gene networks mediating neurodegenerative dementia. Nature Medicine, 2019, 25, 152-164.	15.2	111
94	Deletion of M ₁ Muscarinic Acetylcholine Receptors Increases Amyloid Pathology <i>In Vitro</i> and <i>In Vivo</i> . Journal of Neuroscience, 2010, 30, 4190-4196.	1.7	109
95	Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities. EMBO Journal, 2007, 26, 2755-2767.	3.5	105
96	Subcellular Redistribution of m2 Muscarinic Acetylcholine Receptors in Striatal Interneurons <i>In Vivo</i> after Acute Cholinergic Stimulation. Journal of Neuroscience, 1998, 18, 10207-10218.	1.7	104
97	Nigrostriatal collaterals to thalamus degenerate in parkinsonian animal models. Annals of Neurology, 2001, 50, 321-329.	2.8	103
98	Differential Phagocytic Properties of CD45low Microglia and CD45high Brain Mononuclear Phagocytes—Activation and Age-Related Effects. Frontiers in Immunology, 2018, 9, 405.	2.2	102
99	Reduced CSF p-Tau ₁₈₁ to Tau ratio is a biomarker for FTLD-TDP. Neurology, 2013, 81, 1945-1952.	1.5	100
100	Multiscale network modeling of oligodendrocytes reveals molecular components of myelin dysregulation in Alzheimer's disease. Molecular Neurodegeneration, 2017, 12, 82.	4.4	100
101	Quantitative proteomics of acutely-isolated mouse microglia identifies novel immune Alzheimer's disease-related proteins. Molecular Neurodegeneration, 2018, 13, 34.	4.4	100
102	Coaggregation of RNA-Binding Proteins in a Model of TDP-43 Proteinopathy with Selective RGG Motif Methylation and a Role for RRM1 Ubiquitination. PLoS ONE, 2012, 7, e38658.	1.1	98
103	Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: Anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. Journal of Comparative Neurology, 2001, 434, 445-460.	0.9	96
104	Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. Annals of Neurology, 2007, 62, 640-647.	2.8	94
105	Association of Early-Onset Alzheimer Disease With Elevated Low-Density Lipoprotein Cholesterol Levels and Rare Genetic Coding Variants of <i>APOB</i> . JAMA Neurology, 2019, 76, 809.	4.5	94
106	Multiscale causal networks identify VGF as a key regulator of Alzheimer's disease. Nature Communications, 2020, 11, 3942.	5.8	94
107	Cellular and Subcellular Localization of the Dopamine Transporter in Rat Cortex. Advances in Pharmacology, 1997, 42, 171-174.	1.2	93
108	Proton Pump Inhibitors and Risk of Mild Cognitive Impairment and Dementia. Journal of the American Geriatrics Society, 2017, 65, 1969-1974.	1.3	93

#	Article	IF	CITATIONS
109	Locus Coeruleus Ablation Exacerbates Cognitive Deficits, Neuropathology, and Lethality in P301S Tau Transgenic Mice. Journal of Neuroscience, 2018, 38, 74-92.	1.7	93
110	Multiplex SILAC Analysis of a Cellular TDP-43 Proteinopathy Model Reveals Protein Inclusions Associated with SUMOylation and Diverse Polyubiquitin Chains. Molecular and Cellular Proteomics, 2010, 9, 705-718.	2.5	92
111	An assessment by the Statin Cognitive Safety Task Force: 2014 update. Journal of Clinical Lipidology, 2014, 8, S5-S16.	0.6	92
112	Muscarinic receptor subtypes involved in hippocampal circuits. Life Sciences, 1999, 64, 501-509.	2.0	91
113	M1 Muscarinic Acetylcholine Receptors Activate Extracellular Signal-Regulated Kinase in CA1 Pyramidal Neurons in Mouse Hippocampal Slices. Molecular and Cellular Neurosciences, 2001, 18, 512-524.	1.0	90
114	Cell-specific Sorting of Biogenic Amine Transporters Expressed in Epithelial Cells. Journal of Biological Chemistry, 1996, 271, 18100-18106.	1.6	89
115	Multiple Effects of Aspartate Mutant Presenilin 1 on the Processing and Trafficking of Amyloid Precursor Protein. Journal of Biological Chemistry, 2001, 276, 43343-43350.	1.6	87
116	Phosphoproteomic Analysis of Human Brain by Calcium Phosphate Precipitation and Mass Spectrometry. Journal of Proteome Research, 2008, 7, 2845-2851.	1.8	87
117	Potassium Channel Kv1.3 Is Highly Expressed by Microglia in Human Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 44, 797-808.	1.2	87
118	Shared proteomic effects of cerebral atherosclerosis and Alzheimer's disease on the human brain. Nature Neuroscience, 2020, 23, 696-700.	7.1	86
119	Brain proteome-wide association study implicates novel proteins in depression pathogenesis. Nature Neuroscience, 2021, 24, 810-817.	7.1	85
120	Aggregates of Small Nuclear Ribonucleic Acids (<scp>snRNAs</scp>) in <scp>A</scp> lzheimer's Disease. Brain Pathology, 2014, 24, 344-351.	2.1	83
121	Increased Plasma Beta-Secretase 1 May Predict Conversion to Alzheimer's Disease Dementia in Individuals With Mild Cognitive Impairment. Biological Psychiatry, 2018, 83, 447-455.	0.7	83
122	High Blood Pressure and Cognitive Decline in Mild Cognitive Impairment. Journal of the American Geriatrics Society, 2013, 61, 67-73.	1.3	82
123	Distribution and Developmental Regulation of Metabotropic Glutamate Receptor 7a in Rat Brain. Journal of Neurochemistry, 1998, 71, 636-645.	2.1	81
124	Downâ€Regulation of AMPA Receptor Subunit GluR2 in Amygdaloid Kindling. Journal of Neurochemistry, 1995, 64, 462-465.	2.1	80
125	Kv1.3 inhibition as a potential microglia-targeted therapy for Alzheimer's disease: preclinical proof of concept. Brain, 2018, 141, 596-612.	3.7	79
126	Endogenous Presenilin-1 Targets to Endocytic Rather Than Biosynthetic Compartments. Molecular and Cellular Neurosciences, 2000, 16, 111-126.	1.0	78

#	Article	IF	CITATIONS
127	Localization of M2 muscarinic acetylcholine receptor protein in cholinergic and non-cholinergic terminals in rat hippocampus. Neuroscience Letters, 2000, 284, 182-186.	1.0	78
128	Regulation of the Subcellular Distribution of m4 Muscarinic Acetylcholine Receptors in Striatal NeuronsIn Vivoby the Cholinergic Environment: Evidence for Regulation of Cell Surface Receptors by Endogenous and Exogenous Stimulation. Journal of Neuroscience, 1999, 19, 10237-10249.	1.7	77
129	Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Annals of Neurology, 1999, 46, 103-111.	2.8	77
130	Very early activation of m-calpain in peripheral nerve during Wallerian degeneration. Journal of the Neurological Sciences, 2002, 196, 9-20.	0.3	77
131	Cortical inputs to m2-immunoreactive striatal interneurons in rat and monkey. Synapse, 2000, 37, 252-261.	0.6	76
132	Proteomics Analysis Reveals Novel Components in the Detergent-Insoluble Subproteome in Alzheimer's Disease. Journal of Proteome Research, 2009, 8, 5069-5079.	1.8	76
133	Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Scientific Data, 2020, 7, 340.	2.4	75
134	Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron, 2021, 109, 3402-3420.e9.	3.8	75
135	Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer's disease. Scientific Data, 2020, 7, 315.	2.4	74
136	Omics sciences for systems biology in Alzheimer's disease: State-of-the-art of the evidence. Ageing Research Reviews, 2021, 69, 101346.	5.0	74
137	GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates. Journal of Anatomy, 2000, 196, 555-576.	0.9	73
138	Analysis of a membraneâ€enriched proteome from postmortem human brain tissue in <scp>A</scp> lzheimer's disease. Proteomics - Clinical Applications, 2012, 6, 201-211.	0.8	72
139	Rab5-dependent Trafficking of the m4 Muscarinic Acetylcholine Receptor to the Plasma Membrane, Early Endosomes, and Multivesicular Bodies. Journal of Biological Chemistry, 2001, 276, 47590-47598.	1.6	71
140	Phosphoproteomic Analysis Reveals Site-Specific Changes in GFAP and NDRG2 Phosphorylation in Frontotemporal Lobar Degeneration. Journal of Proteome Research, 2010, 9, 6368-6379.	1.8	71
141	Development of a Rapid Screening Instrument for Mild Cognitive Impairment and Undiagnosed Dementia. Journal of Alzheimer's Disease, 2008, 15, 419-427.	1.2	70
142	Quantitative phosphoproteomics of Alzheimer's disease reveals crossâ€ŧalk between kinases and small heat shock proteins. Proteomics, 2015, 15, 508-519.	1.3	70
143	Cortical Proteins Associated With Cognitive Resilience in Community-Dwelling Older Persons. JAMA Psychiatry, 2020, 77, 1172.	6.0	70
144	Systems-based proteomics to resolve the biology of Alzheimer's disease beyond amyloid and tau. Neuropsychopharmacology, 2021, 46, 98-115.	2.8	70

#	Article	IF	CITATIONS
145	Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. Journal of Comparative Neurology, 1998, 390, 112-132.	0.9	69
146	Ionotropic and metabotropic GABA and glutamate receptors in primate basal ganglia. Journal of Chemical Neuroanatomy, 2001, 22, 13-42.	1.0	69
147	Changes in the detergent-insoluble brain proteome linked to amyloid and tau in Alzheimer's Disease progression. Proteomics, 2016, 16, 3042-3053.	1.3	69
148	Modulation of Reninâ€Angiotensin System May Slow Conversion from Mild Cognitive Impairment to Alzheimer's Disease. Journal of the American Geriatrics Society, 2015, 63, 1749-1756.	1.3	68
149	Distribution of high affinity choline transporter immunoreactivity in the primate central nervous system. Journal of Comparative Neurology, 2003, 463, 341-357.	0.9	67
150	The role of muscarinic acetylcholine receptor-mediated activation of extracellular signal-regulated kinase 1/2 in pilocarpine-induced seizures. Journal of Neurochemistry, 2002, 82, 192-201.	2.1	66
151	RNA-binding proteins with basic-acidic dipeptide (BAD) domains self-assemble and aggregate in Alzheimer's disease. Journal of Biological Chemistry, 2018, 293, 11047-11066.	1.6	66
152	Immunological detection of glutamate receptor subtypes in human central nervous system. Annals of Neurology, 1992, 31, 680-683.	2.8	65
153	Regulation of muscarinic acetylcholine receptor function in acetylcholinesterase knockout mice. Pharmacology Biochemistry and Behavior, 2003, 74, 977-986.	1.3	65
154	Association between polychlorinated biphenyls and Parkinson's disease neuropathology. NeuroToxicology, 2012, 33, 1298-1304.	1.4	64
155	Muscarinic acetylcholine receptor subtype, m2: Diverse functional implications of differential synaptic localization. Life Sciences, 1997, 60, 1031-1038.	2.0	63
156	Quantitative Analysis of the Detergent-Insoluble Brain Proteome in Frontotemporal Lobar Degeneration Using SILAC Internal Standards. Journal of Proteome Research, 2012, 11, 2721-2738.	1.8	61
157	Alzheimer's disease: A clinical perspective and future nonhuman primate research opportunities. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26224-26229.	3.3	61
158	Altered Striatal Function and Muscarinic Cholinergic Receptors in Acetylcholinesterase Knockout Mice. Molecular Pharmacology, 2003, 64, 1309-1316.	1.0	60
159	Neuron Enriched Nuclear Proteome Isolated from Human Brain. Journal of Proteome Research, 2013, 12, 3193-3206.	1.8	60
160	Polarized Expression of the Antidepressant-Sensitive Serotonin Transporter in Epinephrine-Synthesizing Chromaffin Cells of the Rat Adrenal Gland. Molecular and Cellular Neurosciences, 1997, 9, 170-184.	1.0	59
161	Proteomics of protein post-translational modifications implicated in neurodegeneration. Translational Neurodegeneration, 2014, 3, 23.	3.6	59
162	Molecular and Functional Identification of m ₁ Muscarinic Acetylcholine Receptors in Rat Ventricular Myocytes. Circulation Research, 1996, 79, 86-93.	2.0	59

#	Article	IF	CITATIONS
163	A systems pharmacology-based approach to identify novel Kv1.3 channel-dependent mechanisms in microglial activation. Journal of Neuroinflammation, 2017, 14, 128.	3.1	58
164	Dopamine Axons in Primate Prefrontal Cortex: Specificity of Distribution, Synaptic Targets, and Development. Advances in Pharmacology, 1997, 42, 703-706.	1.2	57
165	LSD1 protects against hippocampal and cortical neurodegeneration. Nature Communications, 2017, 8, 805.	5.8	55
166	Effects of APOE Genotype on Brain Proteomic Network and Cell Type Changes in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2018, 11, 454.	1.4	55
167	The Dopamine Transporter Carboxyl-terminal Tail. Journal of Biological Chemistry, 1996, 271, 20885-20894.	1.6	54
168	Subcellular Localization of Presenilins: Association with a Unique Membrane Pool in Cultured Cells. Neurobiology of Disease, 2000, 7, 99-117.	2.1	54
169	Effects of Candesartan vs Lisinopril on Neurocognitive Function in Older Adults With Executive Mild Cognitive Impairment. JAMA Network Open, 2020, 3, e2012252.	2.8	54
170	Distribution of Group III mGluRs in Rat Basal Ganglia with Subtype-Specific Antibodies. Annals of the New York Academy of Sciences, 1999, 868, 531-534.	1.8	53
171	Mint3/X11Î ³ Is an ADP-Ribosylation Factor-dependent Adaptor that Regulates the Traffic of the Alzheimer's Precursor Protein from the <i>Trans</i> -Golgi Network. Molecular Biology of the Cell, 2008, 19, 51-64.	0.9	53
172	5-Hydroxymethylation-associated epigenetic modifiers of Alzheimer's disease modulate Tau-induced neurotoxicity. Human Molecular Genetics, 2016, 25, ddw109.	1.4	53
173	Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer's disease. Clinical Proteomics, 2020, 17, 19.	1.1	53
174	Interaction of Isoflurane with the Dopamine Transporter. Anesthesiology, 2003, 98, 404-411.	1.3	52
175	Effects of Hypertension and Hypercholesterolemia on Cognitive Functioning in Patients With Alzheimer Disease. Alzheimer Disease and Associated Disorders, 2008, 22, 336-342.	0.6	52
176	Asparaginyl endopeptidase cleaves TDPâ \in 43 in brain. Proteomics, 2012, 12, 2455-2463.	1.3	52
177	Genetic control of the human brain proteome. American Journal of Human Genetics, 2021, 108, 400-410.	2.6	52
178	Event-Related Potential Changes in Groups at Increased Risk for Alzheimer Disease. Archives of Neurology, 1999, 56, 1398.	4.9	50
179	Muscarinic Activation of Mitogen-Activated Protein Kinase in PC12 Cells. Journal of Neurochemistry, 2002, 75, 487-493.	2.1	50
180	Rho Kinase II Phosphorylation of the Lipoprotein Receptor LR11/SORLA Alters Amyloid-β Production. Journal of Biological Chemistry, 2011, 286, 6117-6127.	1.6	50

#	Article	IF	CITATIONS
181	Quantitative Analysis of the Brain Ubiquitylome in Alzheimer's Disease. Proteomics, 2018, 18, e1800108.	1.3	50
182	Identification of Conserved Proteomic Networks in Neurodegenerative Dementia. Cell Reports, 2020, 31, 107807.	2.9	49
183	Integrating Next-Generation Genomic Sequencing and Mass Spectrometry To Estimate Allele-Specific Protein Abundance in Human Brain. Journal of Proteome Research, 2017, 16, 3336-3347.	1.8	48
184	Transcriptional regulation of homeostatic and diseaseâ€associatedâ€microglial genes by IRF1, LXRβ, and CEBPα. Glia, 2019, 67, 1958-1975.	2.5	48
185	Selective enrichment of DJ-1 protein in primate striatal neuronal processes: Implications for Parkinson's disease. Journal of Comparative Neurology, 2007, 500, 585-599.	0.9	47
186	U1 small nuclear ribonucleoproteins (snRNPs) aggregate in Alzheimer's disease due to autosomal dominant genetic mutations and trisomy 21. Molecular Neurodegeneration, 2014, 9, 15.	4.4	47
187	Presenilin-1 protein expression in familial and sporadic Alzheimer's disease. Annals of Neurology, 1997, 41, 742-753.	2.8	45
188	Bacterial expression of human muscarinic receptor fusion proteins and generation of subtype-specific antisera. FEBS Letters, 1990, 275, 65-69.	1.3	43
189	Development of muscarinic receptor subtypes in the forebrain of the mouse. Journal of Comparative Neurology, 1995, 358, 88-101.	0.9	43
190	Cell-Specific Extracellular Signal-Regulated Kinase Activation by Multiple G Protein-Coupled Receptor Families in Hippocampus. Molecular Pharmacology, 2003, 63, 128-135.	1.0	43
191	Extracellular signalâ€regulated kinase regulates microglial immune responses in Alzheimer's disease. Journal of Neuroscience Research, 2021, 99, 1704-1721.	1.3	43
192	Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. Npj Genomic Medicine, 2020, 5, 6.	1.7	43
193	Proteomic analysis of postsynaptic density in Alzheimer's Disease. Clinica Chimica Acta, 2013, 420, 62-68.	0.5	42
194	Aggregation Properties of the Small Nuclear Ribonucleoprotein U1-70K in Alzheimer Disease. Journal of Biological Chemistry, 2014, 289, 35296-35313.	1.6	42
195	Muscarinic receptor subtypes in the lateral geniculate nucleus: A light and electron microscopic analysis. , 1999, 404, 408-425.		41
196	Statins and Cognitive Decline in Older Adults with Normal Cognition or Mild Cognitive Impairment. Journal of the American Geriatrics Society, 2013, 61, 1449-1455.	1.3	41
197	Rarity of the Alzheimer Disease–Protective <i>APP</i> A673T Variant in the United States. JAMA Neurology, 2015, 72, 209.	4.5	41
198	Alternative processing of γâ€secretase substrates in common forms of mild cognitive impairment and alzheimer's disease: Evidence for γâ€secretase dysfunction. Annals of Neurology, 2011, 69, 1026-1031.	2.8	40

#	Article	IF	CITATIONS
199	Presenilin 1 Independently Regulates β-Catenin Stability and Transcriptional Activity. Journal of Biological Chemistry, 2001, 276, 48554-48561.	1.6	39
200	Polymer-Encapsulated PC-12 Cells Demonstrate High-Affinity Uptake of Dopamine in Vitro and ¹⁸ F-DOPA Uptake and Metabolism after Intracerebral Implantation in Nonhuman Primates. Cell Transplantation, 1997, 6, 469-477.	1.2	38
201	Notch Signaling Inhibits PC12 Cell Neurite Outgrowth via RBP-J-Dependent and -Independent Mechanisms. Developmental Neuroscience, 2002, 24, 79-88.	1.0	37
202	A Multiancestral Genome-Wide Exome Array Study of Alzheimer Disease, Frontotemporal Dementia, and Progressive Supranuclear Palsy. JAMA Neurology, 2015, 72, 414.	4.5	37
203	Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease. Molecular Neurodegeneration, 2020, 15, 28.	4.4	37
204	CSF complement 3 and factor H are staging biomarkers in Alzheimer's disease. Acta Neuropathologica Communications, 2016, 4, 14.	2.4	35
205	Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Annals of Neurology, 2003, 53, 788-796.	2.8	34
206	CSF betaâ€amyloid 1–42 – what are we measuring in Alzheimer's disease?. Annals of Clinical and Translational Neurology, 2015, 2, 131-139.	1.7	34
207	Fas-associated factor 1 and Parkinson's disease. Neurobiology of Disease, 2008, 31, 309-315.	2.1	33
208	Exploring the potential of the platelet membrane proteome as a source of peripheral biomarkers for Alzheimer's disease. Alzheimer's Research and Therapy, 2013, 5, 32.	3.0	32
209	Racial Disparity in Cognitive and Functional Disability in Hypertension and All-Cause Mortality. American Journal of Hypertension, 2016, 29, 185-193.	1.0	32
210	Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nature Communications, 2022, 13, .	5.8	32
211	Muscarinic receptor M2 in cat visual cortex: Laminar distribution, relationship to ?-aminobutyric acidergic neurons, and effect of cingulate lesions. Journal of Comparative Neurology, 2001, 441, 168-185.	0.9	31
212	LIM kinase 1 accumulates in presynaptic terminals during synapse maturation. , 2000, 416, 319-334.		30
213	Seizures following myelography with iopamidol. Annals of Neurology, 1988, 23, 397-399.	2.8	29
214	Diffuse Plaques in the Striatum in Alzheimer Disease (AD). Journal of Neuropathology and Experimental Neurology, 1997, 56, 1363-1370.	0.9	29
215	Radioligand binding and immunoautoradiographic evidence for a lack of toxicity to dopaminergic nerve terminals in human cocaine overdose victims. Brain Research, 1997, 747, 219-229.	1.1	29
216	Distribution of muscarinic cholinergic receptor proteins m1 to m4 in area 17 of normal and		29

monocularly deprived rhesus monkeys. , 1997, 388, 130-145.

29

#	Article	IF	CITATIONS
217	Abnormal Gephyrin Immunoreactivity Associated With Alzheimer Disease Pathologic Changes. Journal of Neuropathology and Experimental Neurology, 2013, 72, 1009-1015.	0.9	29
218	The State of Systems Genetics in 2017. Cell Systems, 2017, 4, 7-15.	2.9	29
219	Progress with Treatments for Alzheimer's Disease. New England Journal of Medicine, 2021, 384, 1762-1763.	13.9	29
220	Novel Interaction between the M4 Muscarinic Acetylcholine Receptor and Elongation Factor 1A2. Journal of Biological Chemistry, 2002, 277, 29268-29274.	1.6	28
221	Acute Mitochondrial and Chronic Toxicological Effects of 1-Methyl-4-Phenylpyridinium in Human Neuroblastoma Cells. NeuroToxicology, 2002, 23, 569-580.	1.4	28
222	PARK10 Candidate RNF11 Is Expressed by Vulnerable Neurons and Localizes to Lewy Bodies in Parkinson Disease Brain. Journal of Neuropathology and Experimental Neurology, 2007, 66, 955-964.	0.9	28
223	Integrated Approaches for Analyzing U1-70K Cleavage in Alzheimer's Disease. Journal of Proteome Research, 2014, 13, 4526-4534.	1.8	28
224	Inflammation and cognitive functioning in African Americans and Caucasians. International Journal of Geriatric Psychiatry, 2015, 30, 934-941.	1.3	28
225	VisMET: a passive, efficient, and sensitive assessment of visuospatial memory in healthy aging, mild cognitive impairment, and Alzheimer's disease. Learning and Memory, 2019, 26, 93-100.	0.5	28
226	Functional downregulation of GluR2 in piriform cortex of kindled animals. Synapse, 2000, 38, 489-498.	0.6	27
227	Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter. Journal of Neuroscience Research, 2004, 75, 194-202.	1.3	27
228	Rationale and Design of the Emory Healthy Aging and Emory Healthy Brain Studies. Neuroepidemiology, 2019, 53, 187-200.	1.1	27
229	Muscarinic acetylcholine receptor immunoreactivity after hippocampal commissural/associational pathway lesions: Evidence for multiple presynaptic receptor subtypes. Journal of Comparative Neurology, 1997, 380, 382-394.	0.9	26
230	RNF11 modulates microglia activation through NF-κB signalling cascade. Neuroscience Letters, 2012, 528, 174-179.	1.0	26
231	Increased Plasma TACE Activity in Subjects with Mild Cognitive Impairment and Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2014, 41, 877-886.	1.2	26
232	NF-κB activity is inversely correlated to RNF11 expression in Parkinson's disease. Neuroscience Letters, 2013, 547, 16-20.	1.0	25
233	Purpose in life is a robust protective factor of reported cognitive decline among late middle-aged adults: The Emory Healthy Aging Study. Journal of Affective Disorders, 2020, 263, 310-317.	2.0	25
234	Integrative functional genomic analysis of intron retention in human and mouse brain with Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, 984-1004.	0.4	25

#	Article	IF	CITATIONS
235	Unique molecular characteristics and microglial origin of Kv1.3 channel–positive brain myeloid cells in Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
236	Association Between Angiotensin Receptor Blockers and Longitudinal Decline in Tau in Mild Cognitive Impairment. JAMA Neurology, 2015, 72, 1069.	4.5	24
237	Elongation Factor 1A Family Regulates the Recycling of the M4 Muscarinic Acetylcholine Receptor. Neurochemical Research, 2006, 31, 975-988.	1.6	23
238	Coordinate Expression of the Vesicular Acetylcholine Transporter and Choline Acetyltransferase Following Septohippocampal Pathway Lesions. Journal of Neurochemistry, 1998, 71, 2411-2420.	2.1	22
239	Differential Effects of Allosteric M ₁ Muscarinic Acetylcholine Receptor Agonists on Receptor Activation, Arrestin 3 Recruitment, and Receptor Downregulation. ACS Chemical Neuroscience, 2010, 1, 542-551.	1.7	22
240	RTN/Nogo in forming Alzheimer's neuritic plaques. Neuroscience and Biobehavioral Reviews, 2010, 34, 1201-1206.	2.9	21
241	Immunolocalization of muscarinic acetylcholine subtype 2 receptors in rat cochlear nucleus. , 1996, 373, 27-40.		20
242	Sequestration of Muscarinic Cholinergic Receptors in Permeabilized Neuroblastoma Cells. Journal of Neurochemistry, 1994, 62, 1795-1803.	2.1	20
243	Comparative distribution of protein components of the A20 ubiquitin-editing complex in normal human brain. Neuroscience Letters, 2012, 520, 104-109.	1.0	19
244	The Relationship Between Cognitive Functioning and the JNC-8 Guidelines for Hypertension in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 121-126.	1.7	19
245	Characterization of Detergent Insoluble Proteome in Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2018, 77, 40-49.	0.9	19
246	Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer's disease. Nature Communications, 2021, 12, 4001.	5.8	19
247	Association of plasma and CSF cytochrome P450, soluble epoxide hydrolase, and ethanolamide metabolism with Alzheimer's disease. Alzheimer's Research and Therapy, 2021, 13, 149.	3.0	19
248	Atlas of RNA editing events affecting protein expression in aged and Alzheimer's disease human brain tissue. Nature Communications, 2021, 12, 7035.	5.8	19
249	Proteomic Analysis of Hippocampal Dentate Granule Cells in Frontotemporal Lobar Degeneration: Application of Laser Capture Technology. Frontiers in Neurology, 2011, 2, 24.	1.1	18
250	Network Analysis of a Membrane-Enriched Brain Proteome across Stages of Alzheimer's Disease. Proteomes, 2019, 7, 30.	1.7	18
251	Genetic Evidence Supporting a Causal Role of Depression in Alzheimer's Disease. Biological Psychiatry, 2022, 92, 25-33.	0.7	18
252	Aberrant septin 11 is associated with sporadic frontotemporal lobar degeneration. Molecular Neurodegeneration, 2011, 6, 82.	4.4	17

#	Article	IF	CITATIONS
253	Automated analysis of facial emotions in subjects with cognitive impairment. PLoS ONE, 2022, 17, e0262527.	1.1	17
254	Neuronal RING finger protein 11 (RNF11) regulates canonical NF- $\hat{I}^{e}B$ signaling. Journal of Neuroinflammation, 2012, 9, 67.	3.1	16
255	RING finger protein 11 (RNF11) modulates susceptibility to 6-OHDA-induced nigral degeneration and behavioral deficits through NF-I°B signaling in dopaminergic cells. Neurobiology of Disease, 2013, 54, 264-279.	2.1	16
256	Cloning and Localization of Exon 5-Containing Isoforms of the NMDAR1 Subunit in Human and Rat Brains. Journal of Neurochemistry, 2002, 69, 485-493.	2.1	15
257	Feedforward prediction error signals during episodic memory retrieval. Nature Communications, 2020, 11, 6075.	5.8	14
258	TBK1 interacts with tau and enhances neurodegeneration in tauopathy. Journal of Biological Chemistry, 2021, 296, 100760.	1.6	14
259	Synthesis and In Vitro Evaluation of Imidazo[1,2- <i>b</i>]pyridazines as Ligands for β-Amyloid Plaques. ACS Medicinal Chemistry Letters, 2010, 1, 80-84.	1.3	13
260	REDLetr: Workflow and tools to support the migration of legacy clinical data capture systems to REDCap. International Journal of Medical Informatics, 2016, 93, 103-110.	1.6	13
261	Hippocampal place cell dysfunction and the effects of muscarinic M ₁ receptor agonism in a rat model of Alzheimer's disease. Hippocampus, 2018, 28, 568-585.	0.9	13
262	Alzheimer's disease and progressive supranuclear palsy share similar transcriptomic changes in distinct brain regions. Journal of Clinical Investigation, 2022, 132, .	3.9	13
263	Integrating human brain proteomes with genome-wide association data implicates novel proteins in post-traumatic stress disorder. Molecular Psychiatry, 2022, 27, 3075-3084.	4.1	13
264	A â€~Framingham-like' Algorithm for Predicting 4-Year Risk of Progression to Amnestic Mild Cognitive Impairment or Alzheimer's Disease Using Multidomain Information. Journal of Alzheimer's Disease, 2018, 63, 1383-1393.	1.2	12
265	Targeted Quantification of Detergent-Insoluble RNA-Binding Proteins in Human Brain Reveals Stage and Disease Specific Co-aggregation in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 623659.	1.4	12
266	Signatures of glial activity can be detected in the CSF proteome. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
267	The regulation of presenilin-1 by nerve growth factor. Journal of Neurochemistry, 2008, 76, 679-689.	2.1	11
268	Mass Spectrometry-Based Quantification of Tau in Human Cerebrospinal Fluid Using a Complementary Tryptic Peptide Standard. Journal of Proteome Research, 2019, 18, 2422-2432.	1.8	11
269	The impact of vascular comorbidities on qualitative error analysis of executive impairment in Alzheimer's disease. Journal of the International Neuropsychological Society, 2010, 16, 77-83.	1.2	10
270	Immunohistochemical Localization of Proteins in the Nervous System. Current Protocols in Neuroscience, 2003, 25, Unit 1.2.	2.6	9

#	Article	IF	CITATIONS
271	Neuropathologic Correlates of Human Cortical Proteins in Alzheimer Disease and Related Dementias. Neurology, 2022, 98, .	1.5	9
272	[27] Generation of transporter-specific antibodies. Methods in Enzymology, 1998, 296, 407-422.	0.4	8
273	Effects of Selective M ₁ Muscarinic Receptor Activation on Hippocampal Spatial Representations and Neuronal Oscillations. ACS Chemical Neuroscience, 2016, 7, 1393-1405.	1.7	8
274	Maximizing Safety in the Conduct of Alzheimer's Disease Fluid Biomarker Research in the Era of COVID-19. Journal of Alzheimer's Disease, 2020, 76, 27-31.	1.2	8
275	Relationships between frontal metabolites and Alzheimer's disease biomarkers in cognitively normal older adults. Neurobiology of Aging, 2022, 109, 22-30.	1.5	8
276	Brain microRNAs are associated with variation in cognitive trajectory in advanced age. Translational Psychiatry, 2022, 12, 47.	2.4	7
277	Cloning of M-calpain 80 kD subunit from the axonal degeneration-resistant WLDs mouse mutant. Journal of Neuroscience Research, 1998, 52, 653-660.	1.3	6
278	Alzheimer Disease Risk Factors. JAMA Neurology, 2014, 71, 1051.	4.5	6
279	Frequency of the TREM2 R47H Variant in Various Neurodegenerative Disorders. Alzheimer Disease and Associated Disorders, 2019, 33, 327-330.	0.6	6
280	The Feasibility of Measuring Gait in an Outpatient Cognitive Neurology Clinical Setting. Journal of Alzheimer's Disease, 2019, 71, S51-S55.	1.2	5
281	Immunization for Alzheimer's disease: A shot in the arm or a whiff?. Annals of Neurology, 2000, 48, 553-555.	2.8	4
282	Molecules of the Brain. Hospital Practice (1995), 2000, 35, 41-54.	0.5	4
283	Fibrillation and molecular characteristics are coherent with clinical and pathological features of 4-repeat tauopathy caused by MAPT variant G273R. Neurobiology of Disease, 2020, 146, 105079.	2.1	4
284	Mental stress-induced myocardial ischemia and cognitive impairment in coronary atherosclerosis. Journal of Psychosomatic Research, 2021, 141, 110342.	1.2	4
285	Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. Journal of Comparative Neurology, 1997, 388, 211-227.	0.9	4
286	Proteome-Wide Discovery of Cortical Proteins That May Provide Motor Resilience to Offset the Negative Effects of Pathologies in Older Adults. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2023, 78, 494-503.	1.7	4
287	The physician-scientist, 75 years after Vannevar Bush–rethinking the â€~bench' and â€~bedside' dichoto Nature Medicine, 2020, 26, 461-462.	my. 15.2 	3
288	A Genetic Study of Cerebral Atherosclerosis Reveals Novel Associations with NTNG1 and CNOT3. Genes, 2021, 12, 815.	1.0	3

#	Article	IF	CITATIONS
289	Examination of the reliability and feasibility of two smartphone applications to assess executive functioning in racially diverse older adults. Aging, Neuropsychology, and Cognition, 2021, , 1-19.	0.7	3
290	Re-examining physician-scientist training through the prism of the discovery-invention cycle. F1000Research, 2019, 8, 2123.	0.8	3
291	Association between symptoms of psychological distress and cognitive functioning among adults with coronary artery disease. Stress and Health, 2021, 37, 538-546.	1.4	3
292	The Georgia Memory Net: Implementation of a statewide program to diagnose and treat Alzheimer's disease and related dementias. Journal of the American Geriatrics Society, 2022, 70, 1257-1267.	1.3	3
293	Immunochemical Analysis of Dopamine Transporters in Parkinson's Disease. , 2001, 62, 167-177.		2
294	Phenylephrine and norepinephrine increase dopamine transporter ligand binding in striatum. Molecular Imaging and Biology, 2003, 5, 217-226.	1.3	2
295	Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. , 1999, 411, 693.		2
296	Frontal Metabolites and Alzheimer's Disease Biomarkers in Healthy Older Women and Women Diagnosed with Mild Cognitive Impairment. Journal of Alzheimer's Disease, 2022, , 1-11.	1.2	2
297	Cerebral AÎ ² deposition in an AÎ ² -precursor protein-transgenic rhesus monkey. Aging Brain, 2022, 2, 100044.	0.7	2
298	Elevated Serum DDE and Risk for Alzheimer Disease—Reply. JAMA Neurology, 2014, 71, 1056.	4.5	1
299	Integrating human brain proteomes and genomeâ€wide association results implicates new genes in Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e043865.	0.4	1
300	Pre-existing semantic associations contribute to memorability of visual changes in a scene. Journal of Vision, 2021, 21, 2209.	0.1	1
301	Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. , 1999, 407, 33.		1
302	Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia. , 1999, 415, 266.		1
303	Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA-Splicing and Neurodegeneration in Alzheimer's Disease. SSRN Electronic Journal, 0, , .	0.4	1
304	Largeâ€scale deep multiâ€layer analysis of Alzheimer's disease brain reveals strong proteomic diseaseâ€related changes not observed at the RNA level. Alzheimer's and Dementia, 2021, 17, e055041.	0.4	1
305	Guinea-pig tracheal parasympathetic nerves in primary culture express M2 muscarinic receptors. Life Sciences, 1995, 56, 1044.	2.0	0
306	P3-295 Quantification of LR11 expression in mild cognitive impairment, a human model for early Alzheimer's disease. Neurobiology of Aging, 2004, 25, S439.	1.5	0

#	Article	IF	CITATIONS
307	P3-300 Effect of targeted domain deletions on LR11-mediated regulation of extracellular $\hat{A^2}$ levels. Neurobiology of Aging, 2004, 25, S440.	1.5	0
308	Management of the surgical patient with dementia. , 0, , 411-422.		0
309	O4-12-02: Protein co-expression network analysis in Alzheimer's disease. , 2015, 11, P299-P299.		0
310	F2â€01â€03: Discovery of Novel Proteomic Targets for Treatment of Alzheimer's Disease. Alzheimer's and Dementia, 2016, 12, P215.	0.4	0
311	O4â€01â€05: FUNCTIONAL GENETIC DISSECTION OFÂAN ALZHEIMER'S DISEASE SUSCEPTIBILITY NETWORK. Alzheimer's and Dementia, 2018, 14, P1401.	0.4	0
312	O2â€01â€01: A TRANSCRIPTOMIC LANDSCAPE OF MICROGLIAL ACTIVATION IN ALZHEIMER'S DISEASE. Alzheimer and Dementia, 2018, 14, P608.	r'§.4	0
313	F4â€07â€04: THE CONSEQUENCES OF TAU IN THE LOCUS COERULEUS ON ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P1394.	0.4	0
314	P2â€⊋17: INTEGRATED PROTEOMICS AND PHOSPHOPROTEOMICS REVEAL NETWORKS LINKED TO ALZHEIMER'S DISEASE RISK. Alzheimer's and Dementia, 2018, 14, P752.	0.4	0
315	P3â€191: COMPREHENSIVE MAPPING OF ALZHEIMER'S DISEASE BRAIN UBIQUITYLOME. Alzheimer's and Dementia, 2018, 14, P1140.	0.4	0
316	O2â€02â€05: RNAâ€BINDING PROTEINS WITH MIXED CHARGE DOMAINS SELFâ€ASSEMBLE AND AGGREGATE IN ALZHEIMER'S DISEASE. Alzheimer's and Dementia, 2018, 14, P612.	0.4	0
317	Proteomics identifies CSF biomarker panels reflective of pathological networks in the Alzheimer's disease brain. Alzheimer's and Dementia, 2020, 16, e042227.	0.4	0
318	Novel proteomic molecular signatures of brain endothelial cells and microglia in the aging mouse brain. Alzheimer's and Dementia, 2020, 16, e047549.	0.4	0
319	Neurobiological Pathways Linking Acute Mental Stress to Impairments in Executive Function in Individuals with Coronary Artery Disease. Journal of Alzheimer's Disease Reports, 2021, 5, 99-109.	1.2	0
320	Molecular and behavioral phenotypes caused by selective disruption of M4 muscarinic acetylcholine receptorâ€expressing cells. FASEB Journal, 2008, 22, 1127.9.	0.2	0
321	Tau phosphosignatures discriminate Alzheimer Disease from other tauopathies. FASEB Journal, 2015, 29,	0.2	0
322	Depression contributes to Alzheimer's disease through shared genetic risk Alzheimer's and Dementia, 2021, 17 Suppl 3, e053251.	0.4	0