List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3905290/publications.pdf Version: 2024-02-01

		28242	37183
186	11,104	55	96
papers	citations	h-index	g-index
192	192	192	10540
all docs	docs citations	times ranked	citing authors

SAMI ROUEL

#	Article	IF	CITATIONS
1	Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology, 2007, 67, 1627-1639.	3.8	563
2	Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: Effect of the carboxyl content. Carbohydrate Polymers, 2011, 84, 975-983.	5.1	368
3	Nanofibrillated cellulose: surface modification and potential applications. Colloid and Polymer Science, 2014, 292, 5-31.	1.0	363
4	Modification of cellulosic fibres with functionalised silanes: development of surface properties. International Journal of Adhesion and Adhesives, 2004, 24, 43-54.	1.4	344
5	Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose, 2017, 24, 1171-1197.	2.4	305
6	Interaction of Silane Coupling Agents with Cellulose. Langmuir, 2002, 18, 3203-3208.	1.6	268
7	Starch nanoparticles formation via high power ultrasonication. Carbohydrate Polymers, 2013, 92, 1625-1632.	5.1	220
8	Nanofibrillated cellulose as an additive in papermaking process: A review. Carbohydrate Polymers, 2016, 154, 151-166.	5.1	205
9	Kinetics of hydrolysis and self condensation reactions of silanes by NMR spectroscopy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312, 83-91.	2.3	201
10	Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. Journal of Colloid and Interface Science, 2005, 289, 249-261.	5.0	198
11	Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study. Industrial Crops and Products, 2013, 41, 250-259.	2.5	189
12	Nanofibrillated cellulose from Alfa, Eucalyptus and Pine fibres: Preparation, characteristics and reinforcing potential. Carbohydrate Polymers, 2011, 86, 1198-1206.	5.1	182
13	Modification of cellulose fibers with functionalized silanes: Effect of the fiber treatment on the mechanical performances of cellulose-thermoset composites. Journal of Applied Polymer Science, 2005, 98, 974-984.	1.3	178
14	NANOFIBRILLATED CELLULOSE AS PAPER ADDITIVE IN EUCALYPTUS PULPS. BioResources, 2012, 7, .	0.5	155
15	Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magnetic Resonance in Chemistry, 2007, 45, 473-483.	1.1	144
16	Key role of the hemicellulose content and the cell morphology on the nanofibrillation effectiveness of cellulose pulps. Cellulose, 2013, 20, 2863-2875.	2.4	142
17	Adsorption of a Cationic Surfactant onto Cellulosic Fibers I. Surface Charge Effects. Langmuir, 2005, 21, 8106-8113.	1.6	136
18	Blends of PBAT with plasticized starch for packaging applications: Mechanical properties, rheological behaviour and biodegradability. Industrial Crops and Products, 2020, 144, 112061.	2.5	135

#	Article	IF	CITATIONS
19	Structural analysis, and antioxidant and antibacterial properties of chitosan-poly (vinyl alcohol) biodegradable films. Environmental Science and Pollution Research, 2016, 23, 15310-15320.	2.7	126
20	PBAT/thermoplastic starch blends: Effect of compatibilizers on the rheological, mechanical and morphological properties. Carbohydrate Polymers, 2018, 199, 51-57.	5.1	121
21	The application of the Diels-Alder reaction to polymers bearing furan moieties. 1. Reactions with maleimides. European Polymer Journal, 1997, 33, 1203-1211.	2.6	118
22	From paper to nanopaper: evolution of mechanical and physical properties. Cellulose, 2014, 21, 2599-2609.	2.4	118
23	Chitin from Agaricus bisporus: Extraction and characterization. International Journal of Biological Macromolecules, 2018, 117, 1334-1342.	3.6	117
24	Starch Nanocrystal Stabilized Pickering Emulsion Polymerization for Nanocomposites with Improved Performance. ACS Applied Materials & Interfaces, 2014, 6, 8263-8273.	4.0	115
25	Nanocomposite films based on chitosan–poly(vinyl alcohol) and silver nanoparticles with high antibacterial and antioxidant activities. Chemical Engineering Research and Design, 2017, 111, 112-121.	2.7	113
26	Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent. Carbohydrate Polymers, 2015, 126, 199-207.	5.1	109
27	Urethanes and polyurethanes bearing furan moieties. 4. Synthesis, kinetics and characterization of linear polymers. Macromolecules, 1993, 26, 6706-6717.	2.2	99
28	Starch nanocrystals and starch nanoparticles from waxy maize as nanoreinforcement: A comparative study. Carbohydrate Polymers, 2016, 143, 310-317.	5.1	99
29	Preparation of poly(styreneâ€ <i>co</i> â€hexylacrylate)/cellulose whiskers nanocomposites via miniemulsion polymerization. Journal of Applied Polymer Science, 2009, 114, 2946-2955.	1.3	95
30	Ultrasonic assisted production of starch nanoparticles: Structural characterization and mechanism of disintegration. Ultrasonics Sonochemistry, 2018, 41, 327-336.	3.8	95
31	Easy production of cellulose nanofibrils from corn stalk by a conventional high speed blender. Industrial Crops and Products, 2016, 93, 39-47.	2.5	93
32	Mechanical Performance and Transparency of Nanocellulose Reinforced Polymer Nanocomposites. Macromolecular Materials and Engineering, 2014, 299, 560-568.	1.7	90
33	Optimization of the formulation of chitosan edible coatings supplemented with carotenoproteins and their use for extending strawberries postharvest life. Food Hydrocolloids, 2018, 83, 375-392.	5.6	90
34	Cationic nanofibrillar cellulose with high antibacterial properties. Carbohydrate Polymers, 2015, 131, 224-232.	5.1	89
35	Controlled growth of Cu 2 O nanoparticles bound to cotton fibres. Carbohydrate Polymers, 2016, 141, 229-237.	5.1	87
36	Modified cellulose fibres for adsorption of organic compound in aqueous solution. Separation and Purification Technology, 2006, 52, 332-342.	3.9	85

#	Article	IF	CITATIONS
37	Polymerization of pyrrole on cellulose fibres using a FeCl3 impregnation- pyrrole polymerization sequence. Cellulose, 2006, 13, 725-734.	2.4	79
38	Effect of silane coupling agents on the properties of pine fibers/polypropylene composites. Journal of Applied Polymer Science, 2007, 103, 3706-3717.	1.3	77
39	Effect of the combination of biobeating and NFC on the physico-mechanical properties of paper. Cellulose, 2013, 20, 1425-1435.	2.4	76
40	Nanofibrillated cellulose as nanoreinforcement in Portland cement: Thermal, mechanical and microstructural properties. Journal of Composite Materials, 2017, 51, 2491-2503.	1.2	76
41	Hybrid Systems of Silver Nanoparticles Generated on Cellulose Surfaces. Langmuir, 2010, 26, 1996-2001.	1.6	75
42	Cellulose nanofibrils/polyvinyl acetate nanocomposite adhesives with improved mechanical properties. Carbohydrate Polymers, 2017, 156, 64-70.	5.1	75
43	Removal of organic pollutants from water by modified cellulose fibres. Industrial Crops and Products, 2009, 30, 93-104.	2.5	72
44	Controlled surface modification of cellulose fibers by amino derivatives using N,N′-carbonyldiimidazole as activator. Carbohydrate Polymers, 2009, 77, 553-562.	5.1	71
45	High Solid Content Production of Nanofibrillar Cellulose via Continuous Extrusion. ACS Sustainable Chemistry and Engineering, 2017, 5, 2350-2359.	3.2	70
46	Biocomposites based on <i>Alfa</i> fibers and starchâ€based biopolymer. Polymers for Advanced Technologies, 2009, 20, 1068-1075.	1.6	68
47	Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design, 2015, 65, 454-461.	5.1	68
48	Agriculture crop residues as a source for the production of nanofibrillated cellulose with low energy demand. Cellulose, 2014, 21, 4247-4259.	2.4	65
49	Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 2015, 72, 183-191.	2.5	63
50	Enzymatically hydrolyzed and TEMPO-oxidized cellulose nanofibers for the production of nanopapers: morphological, optical, thermal and mechanical properties. Cellulose, 2017, 24, 3943-3954.	2.4	63
51	Cellulosic nanoparticles from alfa fibers (Stipa tenacissima): extraction procedures and reinforcement potential in polymer nanocomposites. Cellulose, 2012, 19, 843-853.	2.4	62
52	Adsorption of cationic surfactants and subsequent adsolubilization of organic compounds onto cellulose fibers. Colloid and Polymer Science, 2004, 283, 344-350.	1.0	59
53	Dispersion of alumina suspension using comb-like and diblock copolymers produced by RAFT polymerization of AMPS and MPEG. Journal of Colloid and Interface Science, 2007, 312, 279-291.	5.0	59
54	Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: Activity and stability studies. Colloids and Surfaces B: Biointerfaces, 2008, 66, 168-177.	2.5	59

#	Article	IF	CITATIONS
55	All-cellulose composites from unbleached hardwood kraft pulp reinforced with nanofibrillated cellulose. Cellulose, 2013, 20, 2909-2921.	2.4	57
56	Composites from poly(lactic acid) and bleached chemical fibres: Thermal properties. Composites Part B: Engineering, 2018, 134, 169-176.	5.9	57
57	Chitosan-Ag-TiO2 films: An effective photocatalyst under visible light. Carbohydrate Polymers, 2018, 199, 31-40.	5.1	57
58	Formation of polymeric films on cellulosic surfaces by admicellar polymerization. Cellulose, 2001, 8, 303-312.	2.4	56
59	Preparation of nanocomposite dispersions based on cellulose whiskers and acrylic copolymer by miniemulsion polymerization: Effect of the silane content. Polymer Engineering and Science, 2011, 51, 62-70.	1.5	56
60	Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode. Journal of Electroanalytical Chemistry, 2017, 799, 70-77.	1.9	56
61	Effects of extraction procedures and plasticizer concentration on the optical, thermal, structural and antioxidant properties of novel ulvan films. International Journal of Biological Macromolecules, 2019, 135, 647-658.	3.6	55
62	PP composites based on mechanical pulp, deinked newspaper and jute strands: A comparative study. Composites Part B: Engineering, 2012, 43, 3453-3461.	5.9	53
63	Morphology of the nanocellulose produced by periodate oxidation and reductive treatment of cellulose fibers. Cellulose, 2018, 25, 3899-3911.	2.4	53
64	Composite materials from unsaturated polyester resin and olive nuts residue: The effect of silane treatment. Industrial Crops and Products, 2014, 62, 491-498.	2.5	52
65	Experimental study on dielectric relaxation in alfa fiber reinforced epoxy composites. Journal of Applied Polymer Science, 2007, 106, 3631-3640.	1.3	51
66	Synthesis and properties of hybrid alkyd–acrylic dispersions and their use in VOC-free waterborne coatings. Progress in Organic Coatings, 2014, 77, 757-764.	1.9	51
67	Nanofibrillar cellulose from Posidonia oceanica: Properties and morphological features. Industrial Crops and Products, 2015, 72, 97-106.	2.5	51
68	Synthesis and characterization of cellulose whiskers/polymer nanocomposite dispersion by mini-emulsion polymerization. Journal of Colloid and Interface Science, 2011, 363, 129-136.	5.0	49
69	Microporous cationic nanofibrillar cellulose aerogel as promising adsorbent of acid dyes. Cellulose, 2017, 24, 1001-1015.	2.4	49
70	Urethanes and polyurethanes bearing furan moieties: 5. Thermoplastic elastomers based on sequenced structures. Polymer, 1995, 36, 1689-1696.	1.8	48
71	Sorption potential of modified nanocrystals for the removal of aromatic organic pollutant from aqueous solution. Industrial Crops and Products, 2011, 33, 350-357.	2.5	48
72	In situ photochemical generation of silver and gold nanoparticles on chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 151-158.	2.3	48

#	Article	IF	CITATIONS
73	Cellulose based organogel as an adsorbent for dissolved organic compounds. Industrial Crops and Products, 2013, 49, 33-42.	2.5	48
74	Thermoplasticized starch modified by reactive blending with epoxidized soybean oil. Industrial Crops and Products, 2014, 53, 261-267.	2.5	48
75	Poly (acrylic acid-co-acrylamide)/cellulose nanofibrils nanocomposite hydrogels: effects of CNFs content on the hydrogel properties. Cellulose, 2016, 23, 3691-3701.	2.4	48
76	Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohydrate Polymers, 2018, 202, 621-630.	5.1	48
77	Dispersion of Al2O3 suspension with acrylic copolymers bearing carboxylic groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 271-283.	2.3	47
78	Adsorption of silane onto cellulose fibers. II. The effect of pH on silane hydrolysis, condensation, and adsorption behavior. Journal of Applied Polymer Science, 2008, 108, 1958-1968.	1.3	47
79	Cellulose-based nanocomposites prepared via mini-emulsion polymerization: Understanding the chemistry of the nanocellulose/matrix interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 448, 1-8.	2.3	47
80	Cationic cellulose nanofibrils as a green support of palladium nanoparticles: catalyst evaluation in Suzuki reactions. Cellulose, 2018, 25, 6963-6975.	2.4	47
81	Starch nanoparticles produced via ultrasonication as a sustainable stabilizer in Pickering emulsion polymerization. RSC Advances, 2014, 4, 42638-42646.	1.7	46
82	Phthalocyanine/chitosan-TiO2 photocatalysts: Characterization and photocatalytic activity. Applied Surface Science, 2015, 339, 128-136.	3.1	45
83	Production of novel chia-mucilage nanocomposite films with starch nanocrystals; An inclusive biological and physicochemical perspective. International Journal of Biological Macromolecules, 2019, 133, 663-673.	3.6	45
84	Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers. Food Hydrocolloids, 2019, 89, 20-28.	5.6	45
85	Triticale crop residue: a cheap material for high performance nanofibrillated cellulose. RSC Advances, 2015, 5, 3141-3151.	1.7	44
86	One-step processing of plasticized starch/cellulose nanofibrils nanocomposites via twin-screw extrusion of starch and cellulose fibers. Carbohydrate Polymers, 2020, 229, 115554.	5.1	44
87	Smart ulvan films responsive to stimuli of plasticizer and extraction condition in physico-chemical, optical, barrier and mechanical properties. International Journal of Biological Macromolecules, 2020, 150, 714-726.	3.6	44
88	Polyesters bearing furan moieties. Polymer Bulletin, 1996, 37, 589-596.	1.7	43
89	Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose, 2006, 13, 81-94.	2.4	43
90	Melt rheology of nanocomposites based on acrylic copolymer and cellulose whiskers. Composites Science and Technology, 2011, 71, 818-827.	3.8	43

#	Article	IF	CITATIONS
91	Polyesters bearing furan moieties, 2. A detailed investigation of the polytransesterification of difuranic diesters with different diols. Macromolecular Chemistry and Physics, 1998, 199, 2755-2765.	1.1	43
92	Remarkable increase of paper strength by combining enzymatic cellulose nanofibers in bulk and TEMPO-oxidized nanofibers as coating. Cellulose, 2016, 23, 3939-3950.	2.4	42
93	Alumina interaction with AMPS–MPEG random copolymers. Journal of Colloid and Interface Science, 2003, 261, 264-272.	5.0	41
94	Flexural properties of fully biodegradable alpha-grass fibers reinforced starch-based thermoplastics. Composites Part B: Engineering, 2015, 81, 98-106.	5.9	41
95	Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Research on Chemical Intermediates, 2015, 41, 4293-4310.	1.3	41
96	Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohydrate Polymers, 2020, 229, 115504.	5.1	40
97	Conception of active food packaging films based on crab chitosan and gelatin enriched with crustacean protein hydrolysates with improved functional and biological properties. Food Hydrocolloids, 2021, 116, 106639.	5.6	40
98	Adsorption of organic compounds onto polyelectrolyte immobilized-surfactant aggregates on cellulosic fibers. Journal of Colloid and Interface Science, 2004, 280, 350-358.	5.0	38
99	In situ generation of TiO2 nanoparticles using chitosan as a template and their photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 321, 211-222.	2.0	38
100	Effect of copolymer dispersant structure on the properties of alumina suspensions. Journal of the European Ceramic Society, 2003, 23, 905-911.	2.8	37
101	Facile functionalization of cotton with nanostructured silver/titania for visible-light plasmonic photocatalysis. Journal of Colloid and Interface Science, 2017, 507, 83-94.	5.0	37
102	Interaction of cationic and anionic polyelectrolyte with SiO2 and Al2O3 powders. Journal of the European Ceramic Society, 2002, 22, 1493-1500.	2.8	35
103	Surface functionalisation of cellulose with noble metals nanoparticles through a selective nucleation. Carbohydrate Polymers, 2011, 86, 1586-1594.	5.1	34
104	Cellulose nanofibrils reinforced PBAT/TPS blends: Mechanical and rheological properties. International Journal of Biological Macromolecules, 2021, 183, 267-275.	3.6	34
105	Self-Aggregation of Cationic Surfactants onto Oxidized Cellulose Fibers and Coadsorption of Organic Compounds. Langmuir, 2007, 23, 3723-3731.	1.6	33
106	A one-step miniemulsion polymerization route towards the synthesis of nanocrystal reinforced acrylic nanocomposites. Soft Matter, 2013, 9, 1975-1984.	1.2	33
107	A one step route synthesis of polyurethane newtwork from epoxidized rapeseed oil. Progress in Organic Coatings, 2017, 105, 48-55.	1.9	32
108	Molecular dynamics of poly(vinyl alcohol)/cellulose nanofibrils nanocomposites highlighted by dielectric relaxation spectroscopy. Composites Part A: Applied Science and Manufacturing, 2019, 124, 105465.	3.8	32

#	Article	IF	CITATIONS
109	Evaluation of the fibrillation method on lignocellulosic nanofibers production from eucalyptus sawdust: A comparative study between high-pressure homogenization and grinding. International Journal of Biological Macromolecules, 2020, 145, 1199-1207.	3.6	32
110	New Hybrid Films Based on Cellulose and Hydroxygallium Phthalocyanine. Synergetic Effects in the Structure and Properties. Langmuir, 2007, 23, 3712-3722.	1.6	31
111	Grafting of Porphyrins on Cellulose Nanometric Films. Langmuir, 2008, 24, 7309-7315.	1.6	31
112	CNFs from twin screw extrusion and high pressure homogenization: A comparative study. Carbohydrate Polymers, 2018, 195, 321-328.	5.1	31
113	Ultrasonic effect on the photocatalytic degradation of Rhodamine 6G (Rh6G) dye by cotton fabrics loaded with TiO2. Cellulose, 2020, 27, 1085-1097.	2.4	30
114	Chitin nanocrystals as Pickering stabilizer for O/W emulsions: Effect of the oil chemical structure on the emulsion properties. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111604.	2.5	30
115	Adsorption of octadecyltrimethylammonium chloride and adsolubilization on to cellulosic fibers. Colloid and Polymer Science, 2004, 282, 699-707.	1.0	29
116	Liâ€doped nanosized TiO ₂ powder with enhanced photocalatylic acivity under sunlight irradiation. Applied Organometallic Chemistry, 2010, 24, 692-699.	1.7	29
117	Alumina interaction with AMPS–MPEG copolymers produced by RAFT polymerization: Stability and rheological behavior. Journal of Colloid and Interface Science, 2009, 333, 209-220.	5.0	28
118	Impact of TEMPO-oxidization strength on the properties of cellulose nanofibril reinforced polyvinyl acetate nanocomposites. Carbohydrate Polymers, 2018, 181, 1061-1070.	5.1	28
119	Hybrid chitosan-TiO2/ZnS prepared under mild conditions with visible-light driven photocatalytic activity. International Journal of Biological Macromolecules, 2018, 116, 1098-1104.	3.6	28
120	Hybrid cotton–anatase prepared under mild conditions with high photocatalytic activity under sunlight. RSC Advances, 2016, 6, 58957-58969.	1.7	27
121	Effect of the interface treatment on the dielectric behavior of composite materials of unsaturated polyester reinforced by Alfa fiber. Journal of Non-Crystalline Solids, 2010, 356, 684-687.	1.5	26
122	Hybrid nanocellulose decorated with silver nanoparticles as reinforcing filler with antibacterial properties. Materials Science and Engineering C, 2019, 105, 110044.	3.8	26
123	Effect of the Fiber Treatment on the Stiffness of Date Palm Fiber Reinforced PP Composites: Macro and Micromechanical Evaluation of the Young's Modulus. Polymers, 2020, 12, 1693.	2.0	25
124	Porous material from cellulose nanofibrils coated with aluminum hydroxyde as an effective adsorbent for fluoride. Journal of Environmental Chemical Engineering, 2020, 8, 103779.	3.3	25
125	Waterborne hybrid alkyd–acrylic dispersion: Optimization of the composition using mixture experimental designs. Progress in Organic Coatings, 2015, 87, 222-231.	1.9	24
126	Cotton functionalized with nanostructured TiO2-Ag-AgBr layer for solar photocatalytic degradation of dyes and toxic organophosphates. International Journal of Biological Macromolecules, 2019, 128, 902-910.	3.6	24

#	Article	IF	CITATIONS
127	Suitability of chitosan nanoparticles as cryoprotectant on shelf life of restructured fish surimi during chilled storage. Cellulose, 2019, 26, 6825-6847.	2.4	24
128	Lignin-containing cellulose fibrils as reinforcement of plasticized PLA biocomposites produced by melt processing using PEG as a carrier. Industrial Crops and Products, 2022, 175, 114287.	2.5	24
129	Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 2014, 131, .	1.3	23
130	Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency. Carbohydrate Polymers, 2020, 240, 116342.	5.1	23
131	TiO2/Ag2O immobilized on cellulose paper: A new floating system for enhanced photocatalytic and antibacterial activities. Environmental Research, 2021, 198, 111257.	3.7	23
132	Dielectric properties of nanocomposites based on cellulose nanocrystals (CNCs) and poly(styrene-co-2-ethyl hexylacrylate) copolymer. Polymer, 2017, 125, 76-89.	1.8	22
133	Development of Nanocomposite Films Based on Chitosan and Gelatin Loaded with Chitosan-Tripolyphosphate Nanoparticles: Antioxidant Potentials and Applications in Wound Healing. Journal of Polymers and the Environment, 2022, 30, 833-854.	2.4	22
134	Alumina interaction with AMPS-PEG random copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 145-153.	2.3	20
135	Paper-TiO2 composite: An effective photocatalyst for 2-propanol degradation in gas phase. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 142-151.	2.0	19
136	Alumina interaction with AMPS–MPEG random copolymers III. Effect of PEG segment length on adsorption, electrokinetic and rheological behavior. Journal of Colloid and Interface Science, 2006, 298, 238-247.	5.0	18
137	Chemical Modification of Semiconductor Surfaces by Means of Nanometric Cellulose Films. Journal of Physical Chemistry C, 2007, 111, 12792-12803.	1.5	18
138	Reinforcing potential of nanofibrillated cellulose from nonwoody plants. Polymer Composites, 2013, 34, 1999-2007.	2.3	18
139	TiO2-CdS Nanocomposites: Effect of CdS Oxidation on the Photocatalytic Activity. Journal of Nanomaterials, 2016, 2016, 1-11.	1.5	18
140	Waterborne acrylic–cellulose nanofibrils nanocomposite latexes via miniemulsion polymerization. Progress in Organic Coatings, 2017, 109, 30-37.	1.9	18
141	Polyesters bearing furan moieties. Part 3. A kinetic study of the transesterification of 2-furoates as a model reaction for the corresponding polycondensations. Polymer International, 1999, 48, 649-659.	1.6	17
142	Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystals. Cellulose, 2013, 20, 1711-1723.	2.4	17
143	Functionalization of cotton fabrics with plasmonic photo-active nanostructured Au-TiO2 layer. Carbohydrate Polymers, 2017, 176, 336-344.	5.1	17
144	Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant. International Journal of Biological Macromolecules, 2018, 107, 530-536.	3.6	17

#	Article	IF	CITATIONS
145	Enzymatic Refining and Cellulose Nanofiber Addition in Papermaking Processes from Recycled and Deinked Slurries. BioResources, 2015, 10, .	0.5	16
146	Ion reduction in metallic nanoparticles nucleation and growth on cellulose films: Does substrate play a role?. Cellulose, 2015, 22, 173-186.	2.4	16
147	AgCl/Ag functionalized cotton fabric: An effective plasmonic hybrid material for water disinfection under sunlight. Solar Energy, 2019, 183, 653-664.	2.9	16
148	Vinyltriethoxysilane-functionalized starch nanocrystals as Pickering stabilizer in emulsion polymerization of acrylic monomers. Application in nanocomposites and pressure-sensitive adhesives. Journal of Colloid and Interface Science, 2020, 578, 533-546.	5.0	16
149	Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity. Nanomaterials, 2020, 10, 470.	1.9	15
150	Agricultural crop residue as a source for the production of cellulose nanofibrils. , 2017, , 129-152.		14
151	Ultrasound Assisted Synthesis of Starch Nanocrystals and It's Applications with Polyurethane for Packaging Film. Journal of Renewable Materials, 2020, 8, 239-250.	1.1	14
152	Development and Evaluation of the Wound Healing Effect of a Novel Topical Cream Formula Based on Ginkgo biloba Extract on Wounds in Diabetic Rats. BioMed Research International, 2021, 2021, 1-12.	0.9	14
153	2-Furyloxiranes III. Chain Extension with Different Polyols. Polymer Journal, 1997, 29, 479-486.	1.3	13
154	Li–N doped and codoped TiO 2 thin films deposited by dip-coating: Characterization and photocatalytic activity under halogen lamp. Applied Surface Science, 2014, 314, 910-918.	3.1	13
155	High-Yield Lignocellulosic Fibers from Date Palm Biomass as Reinforcement in Polypropylene Composites: Effect of Fiber Treatment on Composite Properties. Polymers, 2020, 12, 1423.	2.0	13
156	Cotton decorated with Cu2O-Ag and Cu2O-Ag-AgBr NPs via an in-situ sacrificial template approach and their antibacterial efficiency. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111600.	2.5	13
157	Sustainable plastic composites by polylactic acid-starch blends and bleached kraft hardwood fibers. Composites Part B: Engineering, 2022, 238, 109901.	5.9	13
158	Rheological behavior of nanofibrillated cellulose/acrylic polymer nanocomposites: Effect of melt extrusion. Polymer Composites, 2011, 32, 2070-2075.	2.3	12
159	Hybrid paper–TiO ₂ coupled with a Cu ₂ O heterojunction: an efficient photocatalyst under sun-light irradiation. RSC Advances, 2016, 6, 86918-86929.	1.7	12
160	Nanocellulose. , 2017, , 277-304.		12
161	Honeycomb Organization of Chitin Nanocrystals (ChNCs) in Nanocomposite Films of UV-Cured Waterborne Acrylated Epoxidized Soybean Oil Emulsified with ChNCs. Biomacromolecules, 2021, 22, 3780-3790.	2.6	11
162	Preparation and properties of biocomposites based on jute fibers and blend of plasticized starch and poly(βâ€hydroxybutyrate). Journal of Applied Polymer Science, 2009, 114, 313-321.	1.3	10

#	Article	IF	CITATIONS
163	Valorization of Date Palm Waste for Plastic Reinforcement: Macro and Micromechanics of Flexural Strength. Polymers, 2021, 13, 1751.	2.0	10
164	Nanofibrillated Cellulose: Sustainable Nanofiller with Broad Potentials Use. , 2014, , 267-305.		9
165	Cotton fibres functionalized with plasmonic nanoparticles to promote the destruction of harmful molecules: an overview. Nanotechnology Reviews, 2019, 8, 671-680.	2.6	9
166	Electron beam irradiation in natural fibres reinforced polymers (NFRP). Nuclear Instruments & Methods in Physics Research B, 2008, 266, 4742-4748.	0.6	8
167	Modified biopolymer adsorbent for the removal of dissolved organic pollutants. International Journal of Environmental Technology and Management, 2010, 12, 163.	0.1	8
168	Waterborne butyl methacrylate (co)polymers prepared by pickering emulsion polymerization: Insight of their use as coating materials for slow release-fertilizers. European Polymer Journal, 2021, 156, 110598.	2.6	8
169	Preparation and properties of starch-based biopolymers modified with difunctional isocyanates. BioResources, 2011, 6, 81-102.	0.5	8
170	Hybrid levan–Ag/AgCl nanoparticles produced by UV-irradiation: properties, antibacterial efficiency and application in bioactive poly(vinyl alcohol) films. RSC Advances, 2021, 11, 38990-39003.	1.7	8
171	Twin-screw extrusion for the production of nanocellulose-PVA gels with a high solid content. Carbohydrate Polymers, 2022, 286, 119308.	5.1	8
172	Structural, Morphological, Optical and Photocatalytic Properties of Y, N-Doped and Codoped TiO2 Thin Films. Materials, 2017, 10, 600.	1.3	7
173	The Integral Utilization of Date Palm Waste to Produce Plastic Composites. Polymers, 2021, 13, 2335.	2.0	7
174	Crosslinkable dextrin-coated latex via surfactant-free emulsion polymerization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127776.	2.3	7
175	Cellulose Films: Designing Template-Free Nanoporous Cellulose Films on Semiconducting Surfaces. Microscopy and Microanalysis, 2015, 21, 102-107.	0.2	6
176	Molecular dynamics of poly(styrene-co-2-ethyl hexylacrylate) copolymer/cellulose nanocrystals nanocomposites investigated by dielectric relaxation spectroscopy: Effect of the silane content. Journal of Molecular Liquids, 2016, 224, 515-525.	2.3	6
177	Nanofibrillated cellulose as an additive in papermaking process. , 2017, , 153-173.		6
178	Functionalization of cotton fibers with hierarchical flower-like Na2Ti3O7/Ag layer. Cellulose, 2020, 27, 2887-2899.	2.4	6
179	Cotton fabrics decorated with nanostructured Ag/AgX (X:Cl,Br) as reusable solar light-mediated bactericides: A comparative study. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111342.	2.5	6
180	Surfactant-free waterborne hybrid alkyd–acrylic dispersion: Synthesis, properties and long term stability. Journal of Industrial and Engineering Chemistry, 2014, 20, 3631-3638.	2.9	5

#	Article	IF	CITATIONS
181	Biobased nucleation agents for poly-L-(lactic acid) — Effect on crystallization, rheological and mechanical properties. International Journal of Biological Macromolecules, 2022, 218, 588-600.	3.6	4
182	Surface Photochemistry: Benzophenone as a Probe for the Study of Modified Cellulose Fibres. Research Letters in Physical Chemistry, 2007, 2007, 1-5.	0.3	3
183	Biocomposites from olive-stone flour. , 2017, , 387-408.		3
184	Hybrid systems of gold and silver nanoparticles generated on cellulose surfaces. Microscopy and Microanalysis, 2013, 19, 119-120.	0.2	1
185	Interfacial dynamics analysis in starch nanocrystal/ poly (butyl methacrylate) nanocomposites: Impact of the reinforcement's functionalization. Journal of Molecular Liquids, 2022, 348, 118033.	2.3	1
186	Template-free nanoporous cellulose films on Silicon substrates. Microscopy and Microanalysis, 2015, 21, 82-83.	0.2	0