Deqiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3904662/publications.pdf

Version: 2024-02-01

		430874	377865
59	1,293	18	34 g-index
papers	citations	h-index	g-index
50	50	50	1562
59	59	59	1563
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly Sensitive Fluorescence Assay for miRNA Detection: Investigation of the DNA Spacer Effect on the DSN Enzyme Activity toward Magnetic-Bead-Tethered Probes. ACS Omega, 2022, 7, 2224-2233.	3.5	12
2	Comparison Study on Single Nucleotide Transport Phenomena in Carbon Nanotubes. Nano Letters, 2022, 22, 2147-2154.	9.1	8
3	Tungsten Disulfide Nanosheet-Based Field-Effect Transistor Biosensor for DNA Hybridization Detection. ACS Applied Nano Materials, 2022, 5, 5035-5044.	5.0	17
4	Single-Molecule Identification of the Conformations of Human C-Reactive Protein and Its Aptamer Complex with Solid-State Nanopores. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12077-12088.	8.0	13
5	Highly sensitive fluorescence multiplexed miRNAs biosensors for accurate clinically diagnosis lung cancer disease using LNA-modified DNA probe and DSN enzyme. Analytica Chimica Acta, 2022, 1208, 339778.	5.4	7
6	Ultrahigh Spatial Resolution Cross-Disjoint Mortise-Confined Solid-State Nanopores with an Ultrathin Middle Layer. Journal of Physical Chemistry C, 2022, 126, 8158-8164.	3.1	0
7	Nanopore-based aptasensor for label-free and sensitive vanillin determination in food samples. Food Chemistry, 2022, 389, 133051.	8.2	13
8	De novo profiling of insect-resistant proteins of rice via nanopore peptide differentiation. Biosensors and Bioelectronics, 2022, 212, 114415.	10.1	3
9	Simultaneous Dual-Site Identification of 5 ^m C/8 ^o G in DNA Triplex Using a Nanopore Sensor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 32948-32959.	8.0	4
10	Reversible photo-regulation on the folding/unfolding of telomere G-quadruplexes with solid-state nanopores. Analyst, The, 2021, 146, 655-663.	3.5	6
11	A solid-state nanopore-based single-molecule approach for label-free characterization of plant polysaccharides. Plant Communications, 2021, 2, 100106.	7.7	23
12	Probing the Influence of the Substrate Hole Shape on the Interaction between Helium Ions and Suspended Monolayer Graphene with Raman Spectroscopy. Journal of Physical Chemistry C, 2021, 125, 2202-2211.	3.1	4
13	Graphene-based liquid gated field-effect transistor for label-free detection of DNA hybridization. , 2021, , .		7
14	Nanocrystalline graphite nanopores for DNA sensing. Carbon, 2021, 176, 271-278.	10.3	9
15	Investigation of Substrate Swell-Induced Defect Formation in Suspended Graphene upon Helium Ion Implantation. Journal of Physical Chemistry C, 2021, 125, 16166-16174.	3.1	5
16	Nanopore Technology for the Application of Protein Detection. Nanomaterials, 2021, 11, 1942.	4.1	16
17	Central Limit Theorem-Based Analysis Method for MicroRNA Detection with Solid-State Nanopores. ACS Applied Bio Materials, 2021, 4, 6394-6403.	4.6	5
18	Cross Disjoint Mortise Confined Solid-State Nanopores for Single-Molecule Detection. ACS Applied Nano Materials, 2021, 4, 9811-9820.	5.0	6

#	Article	IF	Citations
19	Enzyme Hinders HIV-1 Tat Viral Transport and Real-Time Measured with Nanopores. ACS Sensors, 2021, 6, 3781-3788.	7.8	8
20	Nanopore detects \hat{I}^3 -radiation inhibited HIV-1 protease activity. Biosensors and Bioelectronics, 2021, 194, 113602.	10.1	5
21	Direct optical observation of DNA clogging motions near controlled dielectric breakdown silicon nitride nanopores. Sensors and Actuators B: Chemical, 2021, 349, 130796.	7.8	4
22	Investigation on the competition of duplex/ G-quadruplex/ i-motif in telomere sequences and c-MYC gene with a solid-state nanopore sensor. Sensors and Actuators B: Chemical, 2021, 348, 130712.	7.8	4
23	Helium-ion-beam nanofabrication: extreme processes and applications. International Journal of Extreme Manufacturing, 2021, 3, 012001.	12.7	34
24	The Raman band shift of suspended graphene impacted by the substrate edge and helium ion irradiation. Nano Express, 2021, 2, 010001.	2.4	5
25	Recent Advances in Ultrasensitive miRNA Biomarkers Detection. Smart Sensors, Measurement and Instrumentation, 2021, , 137-164.	0.6	4
26	Toward clean and crackless polymer-assisted transfer of CVD-grown graphene and its recent advances in GFET-based biosensors. Materials Today Chemistry, 2021, 22, 100578.	3.5	9
27	Single-Molecule Study on Interactions between Cyclic Nonribosomal Peptides and Protein Nanopore. ACS Applied Bio Materials, 2020, 3, 554-560.	4.6	8
28	High-efficiency synthesis of large-area monolayer WS2 crystals on SiO2/Si substrate via NaCl-assisted atmospheric pressure chemical vapor deposition. Applied Surface Science, 2020, 533, 147479.	6.1	27
29	Nanopore Fabrication via Transient High Electric Field Controlled Breakdown and Detection of Single RNA Molecules. ACS Applied Bio Materials, 2020, 3, 6368-6375.	4.6	6
30	Label-free single-molecule identification of telomere G-quadruplexes with a solid-state nanopore sensor. RSC Advances, 2020, 10, 27215-27224.	3.6	10
31	A novel dielectric breakdown apparatus for solid-state nanopore fabrication with transient high electric field. Review of Scientific Instruments, 2020, 91, 093203.	1.3	9
32	Reduction chemistry-assisted nanopore determination method for immunoglobulin isotypes. Nanoscale, 2020, 12, 19711-19718.	5.6	8
33	Investigation of the adsorption behavior of BSA with tethered lipid layer-modified solid-state nanopores in a wide pH range. RSC Advances, 2019, 9, 15431-15436.	3.6	6
34	Slowing down DNA translocation velocity using a LiCl salt gradient and nanofiber mesh. European Biophysics Journal, 2019, 48, 261-266.	2.2	8
35	Fabrication of 3D nanovolcano-shaped nanopores with helium ion microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, 011603.	1.2	9
36	DNA translocation through solid-state nanopore. Journal of Micro-Bio Robotics, 2018, 14, 35-40.	2.1	4

#	Article	IF	CITATIONS
37	Slowing down DNA translocation by a nanofiber meshed layer. Journal Physics D: Applied Physics, 2018, 51, 045402.	2.8	8
38	Displacement chemistry-based nanopore analysis of nucleic acids in complicated matrices. Chemical Communications, 2018, 54, 13977-13980.	4.1	27
39	Unveiling the spin Hall effect of light in Imbert-Fedorov shift at the Brewster angle with weak measurements. Optics Express, 2018, 26, 22934.	3.4	25
40	Label-Free Sensitive Detection of Microcystin-LR via Aptamer-Conjugated Gold Nanoparticles Based on Solid-State Nanopores. Langmuir, 2018, 34, 14825-14833.	3.5	32
41	Fabrication of controllable mesh layers above SiNx micro pores with ZnO nanostructures. Microelectronic Engineering, 2017, 169, 43-48.	2.4	2
42	Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection. Nanotechnology, 2017, 28, 045302.	2.6	55
43	Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection. ACS Omega, 2017, 2, 7127-7135.	3.5	20
44	Quantitative detection of the respective concentrations of chiral compounds with weak measurements. Applied Physics Letters, 2017, 111, .	3.3	41
45	DNA translocation through solid-state nanopore. , 2017, , .		1
46	Polarization conversion based on plasmonic phase control by an ultra-thin metallic nano-strips. AIP Advances, 2016, 6, 125304.	1.3	2
47	3D nanopore shape control by current-stimulus dielectric breakdown. Applied Physics Letters, 2016, 109, .	3.3	35
48	A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure. AIP Advances, 2016, 6, .	1.3	17
49	Solid-state nanopores fabricated by pulse-controlled dielectric breakdown. , 2016, , .		1
50	Stability of Solid-State Nanopore Fabricated by Dielectric Breakdown. Biophysical Journal, 2016, 110, 506a.	0.5	3
51	Monitoring tetracycline through a solid-state nanopore sensor. Scientific Reports, 2016, 6, 27959.	3.3	17
52	Nanopore-based Fourth-generation DNA Sequencing Technology. Genomics, Proteomics and Bioinformatics, 2015, 13, 4-16.	6.9	329
53	Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales. Nanoscale, 2014, 6, 8900-8906.	5. 6	57
54	Regulating the Transport of DNA through Biofriendly Nanochannels in a Thin Solid Membrane. Scientific Reports, 2014, 4, 3985.	3.3	40

DEQIANG WANG

#	Article	IF	CITATIONS
55	Dynamics of DNA translocation in a solid-state nanopore immersed in aqueous glycerol. Nanotechnology, 2012, 23, 455102.	2.6	33
56	Nanopores in solid-state membranes engineered for single molecule detection. Nanotechnology, 2010, 21, 065502.	2.6	77
57	Nanopore Sequencing: Electrical Measurements of the Code of Life. IEEE Nanotechnology Magazine, 2010, 9, 281-294.	2.0	81
58	Detection of nerve agent hydrolytes in an engineered nanopore. Sensors and Actuators B: Chemical, 2009, 139, 440-446.	7.8	36
59	Stochastic sensing of biomolecules in a nanopore sensor array. Nanotechnology, 2008, 19, 505504.	2.6	28