
Peter C Tyler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3904635/publications.pdf Version: 2024-02-01

DETED C TVIED

#	Article	IF	CITATIONS
1	Synthesis and Characterization of Transition-State Analogue Inhibitors against Human DNA Methyltransferase 1. Journal of Medicinal Chemistry, 2022, 65, 5462-5494.	6.4	2
2	Aminofutalosine Deaminase in the Menaquinone Pathway of Helicobacter pylori. Biochemistry, 2021, 60, 1933-1946.	2.5	1
3	Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues. Nature Communications, 2021, 12, 6285.	12.8	11
4	Comparison of disaccharide donors for heparan sulfate synthesis: uronic acids <i>vs.</i> their pyranose equivalents. Organic and Biomolecular Chemistry, 2020, 18, 4728-4733.	2.8	3
5	Shotgun ion mobility mass spectrometry sequencing of heparan sulfate saccharides. Nature Communications, 2020, 11, 1481.	12.8	39
6	Transition State Analogues Enhanced by Fragment-Based Structural Analysis: Bacterial Methylthioadenosine Nucleosidases. Biochemistry, 2020, 59, 831-835.	2.5	4
7	Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Organic and Biomolecular Chemistry, 2019, 17, 1817-1821.	2.8	15
8	Selective Inhibitors of <i>Helicobacter pylori</i> Methylthioadenosine Nucleosidase and Human Methylthioadenosine Phosphorylase. Journal of Medicinal Chemistry, 2019, 62, 3286-3296.	6.4	10
9	Immucillins in Infectious Diseases. ACS Infectious Diseases, 2018, 4, 107-117.	3.8	49
10	Dendrimer Heparan Sulfate Glycomimetics: Potent Heparanase Inhibitors for Anticancer Therapy. ACS Chemical Biology, 2018, 13, 3236-3242.	3.4	28
11	Transition-State Analogues of <i>Campylobacter jejuni</i> 5′-Methylthioadenosine Nucleosidase. ACS Chemical Biology, 2018, 13, 3173-3183.	3.4	11
12	The transition to magic bullets – transition state analogue drug design. MedChemComm, 2018, 9, 1983-1993.	3.4	14
13	Oligonucleotide transition state analogues of saporin L3. European Journal of Medicinal Chemistry, 2017, 127, 793-809.	5.5	2
14	Transition State Analogue Inhibitors of 5′-Deoxyadenosine/5′-Methylthioadenosine Nucleosidase from <i>Mycobacterium tuberculosis</i> . Biochemistry, 2017, 56, 5090-5098.	2.5	14
15	Diastereoselective Carbamate Annulation for the Synthesis of 2,5â€Dideoxyâ€2,5â€iminoglycitols. ChemistrySelect, 2017, 2, 8028-8032.	1.5	2
16	Transition State Analysis of Adenosine Triphosphate Phosphoribosyltransferase. ACS Chemical Biology, 2017, 12, 2662-2670.	3.4	12
17	Mechanism-based inactivator of isocitrate lyases 1 and 2 from <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7617-7622.	7.1	32
18	Continuous Fluorescence Assays for Reactions Involving Adenine. Analytical Chemistry, 2016, 88, 11860-11867.	6.5	9

Peter C Tyler

#	Article	lF	CITATIONS
19	Composition, Sequencing and Ion Mobility Mass Spectrometry of Heparan Sulfate-like Octasaccharide Isomers Differing in Glucuronic and Iduronic Acid Content. European Journal of Mass Spectrometry, 2015, 21, 245-254.	1.0	20
20	Singleâ€Entity Heparan Sulfate Glycomimetic Clusters for Therapeutic Applications. Angewandte Chemie - International Edition, 2015, 54, 2718-2723.	13.8	34
21	New Antibiotic Candidates against <i>Helicobacter pylori</i> . Journal of the American Chemical Society, 2015, 137, 14275-14280.	13.7	41
22	Tight binding enantiomers of pre-clinical drug candidates. Bioorganic and Medicinal Chemistry, 2015, 23, 5326-5333.	3.0	11
23	The synthesis of possible transition state analogue inhibitors of thymidine phosphorylase. Tetrahedron Letters, 2015, 56, 406-409.	1.4	1
24	Crystal packing in three related disaccharides: precursors to heparan sulfate oligosaccharides. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 582-587.	0.5	1
25	Immucillins ImmA and ImmH Are Effective and Non-toxic in the Treatment of Experimental Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2015, 9, e0004297.	3.0	21
26	Immucillins Impair Leishmania (L.) infantum chagasi and Leishmania (L.) amazonensis Multiplication In Vitro. PLoS ONE, 2015, 10, e0124183.	2.5	14
27	The Immucillins: Design, Synthesis and Application of Transition- State Analogues. Current Medicinal Chemistry, 2015, 22, 3897-3909.	2.4	15
28	Inhibition and Structure of Toxoplasma gondii Purine Nucleoside Phosphorylase. Eukaryotic Cell, 2014, 13, 572-579.	3.4	16
29	Salmonella enterica MTAN at 1.36ÂÃ Resolution: A Structure-Based Design of Tailored Transition State Analogs. Structure, 2013, 21, 963-974.	3.3	17
30	Acyclic phosph(on)ate inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorganic and Medicinal Chemistry, 2013, 21, 5629-5646.	3.0	34
31	Synthesis of a Targeted Library of Heparan Sulfate Hexa―to Dodecasaccharides as Inhibitors of β‧ecretase: Potential Therapeutics for Alzheimer's Disease. Chemistry - A European Journal, 2013, 19, 6817-6823.	3.3	80
32	Translationally related nearly identical molecules: 4-methoxyphenyl 4-O-[6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-4-O-(fluoren-9-ylmethoxycarbonyl)-α-D-glucopyranosyl]-2-O-benzoyl Acta Crystallographica Section C: Crystal Structure Communications, 2013, 69, 679-682.	-3- 0:a enzy	yl-62O-chloroa
33	Transition State Analogues of Plasmodium falciparum and Human Orotate Phosphoribosyltransferases. Journal of Biological Chemistry, 2013, 288, 34746-34754.	3.4	18
34	Methylthioadenosine Deaminase in an Alternative Quorum Sensing Pathway in <i>Pseudomonas aeruginosa</i> . Biochemistry, 2012, 51, 9094-9103.	2.5	14
35	Acyclic Immucillin Phosphonates: Second-Generation Inhibitors of Plasmodium falciparum Hypoxanthine- Guanine-Xanthine Phosphoribosyltransferase. Chemistry and Biology, 2012, 19, 721-730.	6.0	59
36	Transition state analogue inhibitors of human methylthioadenosine phosphorylase and bacterial methylthioadenosine/S-adenosylhomocysteine nucleosidase incorporating acyclic ribooxacarbenium ion mimics. Bioorganic and Medicinal Chemistry, 2012, 20, 5181-5187.	3.0	12

Peter C Tyler

#	Article	IF	CITATIONS
37	A Picomolar Transition State Analogue Inhibitor of MTAN as a Specific Antibiotic for <i>Helicobacter pylori</i> . Biochemistry, 2012, 51, 6892-6894.	2.5	51
38	Stereoselective Total Synthesis of Aminoiminohexitols via Carbamate Annulation. Journal of Organic Chemistry, 2011, 76, 9611-9621.	3.2	19
39	Entropy-Driven Binding of Picomolar Transition State Analogue Inhibitors to Human 5′-Methylthioadenosine Phosphorylase. Biochemistry, 2011, 50, 10408-10417.	2.5	21
40	Syntheses of novel azasugar-containing mimics of heparan sulfate fragments as potential heparanase inhibitors. Carbohydrate Research, 2010, 345, 1831-1841.	2.3	11
41	p-Tolyl 2-O-benzoyl-3-O-benzyl-4,6-O-benzylidene-1-thio-α-L-idopyranoside. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o1598-o1599.	0.2	0
42	Four generations of transition-state analogues for human purine nucleoside phosphorylase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4805-4812.	7.1	71
43	Design and Synthesis of Potent "Sulfur-Free―Transition State Analogue Inhibitors of 5′-Methylthioadenosine Nucleosidase and 5′-Methylthioadenosine Phosphorylase. Journal of Medicinal Chemistry, 2010, 53, 6730-6746.	6.4	39
44	Third-Generation Immucillins: Syntheses and Bioactivities of Acyclic Immucillin Inhibitors of Human Purine Nucleoside Phosphorylase. Journal of Medicinal Chemistry, 2009, 52, 1126-1143.	6.4	68
45	Immucillins in custom catalytic-site cavities. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5900-5903.	2.2	14
46	Azetidine Based Transition State Analogue Inhibitors of <i>N</i> -Ribosyl Hydrolases and Phosphorylases. Journal of Medicinal Chemistry, 2008, 51, 948-956.	6.4	78
47	<scp>l</scp> -Enantiomers of Transition State Analogue Inhibitors Bound to Human Purine Nucleoside Phosphorylase. Journal of the American Chemical Society, 2008, 130, 842-844.	13.7	23
48	Transition-State Interactions Revealed in Purine Nucleoside Phosphorylase by Binding Isotope Effects. Journal of the American Chemical Society, 2008, 130, 2166-2167.	13.7	21
49	A practical synthesis of (3R,4R)-N-tert-butoxycarbonyl-4-hydroxymethylpyrrolidin-3-ol. Organic and Biomolecular Chemistry, 2007, 5, 2800.	2.8	20
50	Synthesis of 5â€~-Methylthio Coformycins: Specific Inhibitors for Malarial Adenosine Deaminase. Journal of the American Chemical Society, 2007, 129, 6872-6879.	13.7	60
51	Acyclic Ribooxacarbenium Ion Mimics as Transition State Analogues of Human and Malarial Purine Nucleoside Phosphorylases. Journal of the American Chemical Society, 2007, 129, 6984-6985.	13.7	40
52	Picomolar Inhibitors as Transition-State Probes of 5′-Methylthioadenosine Nucleosidases. ACS Chemical Biology, 2007, 2, 725-734.	3.4	62
53	Inhibition and Structure ofTrichomonas vaginalisPurine Nucleoside Phosphorylase with Picomolar Transition State Analoguesâ€. Biochemistry, 2007, 46, 659-668.	2.5	39
54	Syntheses and bio-activities of the l-enantiomers of two potent transition state analogue inhibitors of purine nucleoside phosphorylases. Organic and Biomolecular Chemistry, 2006, 4, 1131.	2.8	75

#	Article	IF	CITATIONS
55	Structure and Inhibition of a Quorum Sensing Target fromStreptococcus pneumoniaeâ€. Biochemistry, 2006, 45, 12929-12941.	2.5	61
56	Transition State Analogue Discrimination by Related Purine Nucleoside Phosphorylases. Journal of the American Chemical Society, 2006, 128, 7126-7127.	13.7	36
57	Second Generation Transition State Analogue Inhibitors of Human 5â€~-Methylthioadenosine Phosphorylase. Journal of Medicinal Chemistry, 2005, 48, 4679-4689.	6.4	58
58	Femtomolar Transition State Analogue Inhibitors of 5â€2-Methylthioadenosine/S-Adenosylhomocysteine Nucleosidase from Escherichia coli. Journal of Biological Chemistry, 2005, 280, 18265-18273.	3.4	122
59	Energetic Mapping of Transition State Analogue Interactions with Human and Plasmodium falciparum Purine Nucleoside Phosphorylases. Journal of Biological Chemistry, 2005, 280, 30320-30328.	3.4	51
60	Targeting a Novel Plasmodium falciparum Purine Recycling Pathway with Specific Immucillins. Journal of Biological Chemistry, 2005, 280, 9547-9554.	3.4	105
61	Structural Rationale for the Affinity of Pico- and Femtomolar Transition State Analogues of Escherichia coli 5â€2-Methylthioadenosine/S-Adenosylhomocysteine Nucleosidase. Journal of Biological Chemistry, 2005, 280, 18274-18282.	3.4	71
62	Plasmodium falciparum Purine Nucleoside Phosphorylase. Journal of Biological Chemistry, 2004, 279, 18103-18106.	3.4	104
63	The chemistry of castanospermine. Direct oxidation of the tetraacetate to the corresponding γ-lactam. Carbohydrate Research, 2004, 339, 1747-1751.	2.3	6
64	Imino-C-nucleoside Synthesis:Â Heteroaryl Lithium Carbanion Additions to a Carbohydrate Cyclic Imine and Nitrone. Journal of Organic Chemistry, 2004, 69, 2217-2220.	3.2	37
65	Inhibitors of ADP-Ribosylating Bacterial Toxins Based on Oxacarbenium Ion Character at Their Transition States. Journal of the American Chemical Society, 2004, 126, 5690-5698.	13.7	45
66	Targeting the Polyamine Pathway with Transition-State Analogue Inhibitors of 5â€~-Methylthioadenosine Phosphorylase. Journal of Medicinal Chemistry, 2004, 47, 3275-3281.	6.4	53
67	Picomolar Transition State Analogue Inhibitors of Human 5â€~-Methylthioadenosine Phosphorylase and X-ray Structure with MT-Immucillin-Aâ€. Biochemistry, 2004, 43, 9-18.	2.5	65
68	(1R,2R,3S,5R,6R,7S,9aR,10aR)-4a,8a-Diazaperhydroanthracene-1,2,3,5,6,7-hexaol. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1370-o1371.	0.2	1
69	tert-Butyl 6-O-benzyl-2,2-dichloro-2,5-dideoxy-4-O-methyl-α-D-ribo-oct-3-pyranulosonate. Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1514-o1516.	0.2	1
70	Synthesis of a Transition State Analogue Inhibitor of Purine Nucleoside Phosphorylase via the Mannich Reaction. Organic Letters, 2003, 5, 3639-3640.	4.6	77
71	Synthesis of Second-Generation Transition State Analogues of Human Purine Nucleoside Phosphorylase. Journal of Medicinal Chemistry, 2003, 46, 5271-5276.	6.4	100
72	8-Aza-immucillins as Transition-State Analogue Inhibitors of Purine Nucleoside Phosphorylase and Nucleoside Hydrolases. Journal of Medicinal Chemistry, 2003, 46, 155-160.	6.4	54

#	Article	IF	CITATIONS
73	Exploring Structureâ^'Activity Relationships of Transition State Analogues of Human Purine Nucleoside Phosphorylase. Journal of Medicinal Chemistry, 2003, 46, 3412-3423.	6.4	80
74	Achieving the Ultimate Physiological Goal in Transition State Analogue Inhibitors for Purine Nucleoside Phosphorylase. Journal of Biological Chemistry, 2003, 278, 31465-31468.	3.4	113
75	Imino-Sugar-Based Nucleosides. Current Topics in Medicinal Chemistry, 2003, 3, 525-540.	2.1	51
76	Transition State Analogue Inhibitors of Purine Nucleoside Phosphorylase from Plasmodium falciparum. Journal of Biological Chemistry, 2002, 277, 3219-3225.	3.4	89
77	Purine-less Death in Plasmodium falciparumInduced by Immucillin-H, a Transition State Analogue of Purine Nucleoside Phosphorylase. Journal of Biological Chemistry, 2002, 277, 3226-3231.	3.4	101
78	Atomic Dissection of the Hydrogen Bond Network for Transition-State Analogue Binding to Purine Nucleoside Phosphorylase. Biochemistry, 2002, 41, 14489-14498.	2.5	61
79	New mannotriosides and trimannosides as potential ligands for mannose-specific binding proteins. Canadian Journal of Chemistry, 2002, 80, 964-972.	1.1	13
80	Synthesis of deuterated-BCX-1777, a potent inhibitor of purine nucleoside phosphorylase. Journal of Labelled Compounds and Radiopharmaceuticals, 2002, 45, 71-78.	1.0	1
81	Synthesis and utility of sulfated chromogenic carbohydrate model substrates for measuring activities of mucin-desulfating enzymes. Carbohydrate Research, 2002, 337, 1095-1111.	2.3	21
82	Addition of Lithiated 9-Deazapurine Derivatives to a Carbohydrate Cyclic Imine:Â Convergent Synthesis of the Aza-C-nucleoside Immucillins. Journal of Organic Chemistry, 2001, 66, 5723-5730.	3.2	90
83	Purine Nucleoside Phosphorylase fromMycobacterium tuberculosis. Analysis of Inhibition by a Transition-State Analogue and Dissection by Partsâ€. Biochemistry, 2001, 40, 8196-8203.	2.5	57
84	Stereoselective Total Synthesis of (±)-Thielocin Alβ. Journal of the American Chemical Society, 2001, 123, 11381-11387.	13.7	26
85	Ricin A-Chain Inhibitors Resembling the Oxacarbenium Ion Transition Stateâ€. Biochemistry, 2001, 40, 6845-6851.	2.5	38
86	New syntheses of 1d- and 1l-1,2-anhydro-myo-inositol and assessment of their glycosidase inhibitory activities. Carbohydrate Research, 2000, 329, 301-308.	2.3	32
87	Synthesis of Transition State Analogue Inhibitors for Purine Nucleoside Phosphorylase and N-Riboside Hydrolases. Tetrahedron, 2000, 56, 3053-3062.	1.9	86
88	Prostaglandin E2-bisphosphonate conjugates: potential agents for treatment of osteoporosis. Bioorganic and Medicinal Chemistry, 1999, 7, 901-919.	3.0	86
89	Transition state analogue inhibitors of protozoan nucleoside hydrolases. Bioorganic and Medicinal Chemistry, 1999, 7, 2599-2606.	3.0	40
90	Transition-state analogs as inhibitors of human and malarial hypoxanthine-guanine phosphoribosyltransferases. Nature Structural Biology, 1999, 6, 582-587.	9.7	92

#	Article	IF	CITATIONS
91	The 2.0 A structure of human hypoxanthine-guanine phosphoribosyltransferase in complex with a transition-state analog inhibitor. Nature Structural Biology, 1999, 6, 588-593.	9.7	148
92	Improved Syntheses of 3H,5H-Pyrrolo[3,2-d]pyrimidines. Journal of Organic Chemistry, 1999, 64, 8411-8412.	3.2	64
93	Iminoribitol Transition State Analogue Inhibitors of Protozoan Nucleoside Hydrolasesâ€. Biochemistry, 1999, 38, 13147-13154.	2.5	78
94	One-Third-the-Sites Transition-State Inhibitors for Purine Nucleoside Phosphorylaseâ€. Biochemistry, 1998, 37, 8615-8621.	2.5	254
95	The chemistry of castanospermine, part V: synthetic modifications at C-1 and C-7. Tetrahedron, 1997, 53, 245-268.	1.9	41
96	Synthesis of transition state inhibitors for N-riboside hydrolases and transferases. Tetrahedron, 1997, 53, 2915-2930.	1.9	77
97	Mechanistic Diagnoses of N-Ribohydrolases and Purine Nucleoside Phosphorylase. Journal of the American Chemical Society, 1996, 118, 2111-2112.	13.7	59
98	The Chemistry of Castanospermine, Part IV1: Synthetic Modifications at C-8. Tetrahedron, 1995, 51, 12611-12630.	1.9	28
99	The chemistry of castanospermine, part III:1,2 Castanospermine-6-phosphate, an unusual route to a novel compound. Tetrahedron Letters, 1995, 36, 3055-3058.	1.4	17
100	The chemistry of castanospermine, part II: Synthesis of deoxyfluoro analogues of castanospermine. Tetrahedron Letters, 1994, 35, 3143-3146.	1.4	21
101	The chemistry of castanospermine, part I: synthetic modifications at C-6. Tetrahedron, 1994, 50, 2131-2160.	1.9	66
102	Total synthesis of (.+)-thielocin A1.beta.: a novel inhibitor of phospholipase A2. Journal of the American Chemical Society, 1994, 116, 759-760.	13.7	50
103	Synthesis of 1,5-dideoxy-1,5-imino-d-galactitol from l-sorbose. Tetrahedron Letters, 1993, 34, 3609-3612.	1.4	28
104	A short practical synthesis of deoxymannojirimycin from d-fructose. Tetrahedron Letters, 1993, 34, 3613-3616.	1.4	24
105	2-Benzyloxy-6,8-Dioxabicyclo[3.2.1]Octanes: New carbohydrate-derived herbicides. Pest Management Science, 1991, 31, 419-435.	0.4	9
106	An evaluation of the herbicidal and plant growth regulatory activity of a novel class of carbohydrate-derived 6,8-dioxabicyclo[3.2.1]octanes. Pest Management Science, 1990, 30, 59-66.	0.4	8
107	Synthesis and photolysis of some carbohydrate 1,6-dienes. Carbohydrate Research, 1985, 136, 249-258.	2.3	11
108	Total synthesis of the C-3 – C-17 segment of boromycin. Canadian Journal of Chemistry, 1983, 61, 634-637.	1.1	18

#	Article	IF	CITATIONS
109	Total synthesis and stereochemical identity of the C18H32O5 degradation product from boromycin. Journal of the American Chemical Society, 1981, 103, 6243-6246.	13.7	39
110	Reaction of lithium dimethylcuprate with conformationally biased β-acyloxy enol esters - regio and stereocontrolled access to functionalized six-carbon chiral synthons. Tetrahedron Letters, 1981, 22, 4583-4586.	1.4	31
111	Observations on the possible application of glycosyl disulphides, sulphenic esters, and sulphones in the synthesis of glycosides. Carbohydrate Research, 1977, 58, 397-404.	2.3	36
112	Aspects of the tautomerism of 2-(d-galacto-1,2,3,4,5-pentahydroxypentyl)benzothiazoline. Carbohydrate Research, 1977, 54, 199-208.	2.3	4