Minjoo L Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3904525/publications.pdf

Version: 2024-02-01

		81900	8	8630	
189	5,769	39		70	
papers	citations	h-index		g-index	
189	189	189		6583	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Strained Si, SiGe, and Ge channels for high-mobility metal-oxide-semiconductor field-effect transistors. Journal of Applied Physics, 2005, 97, 011101.	2.5	818
2	Polymer bulk heterojunction solar cells employing FÃ \P rster resonance energy transfer. Nature Photonics, 2013, 7, 479-485.	31.4	389
3	Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si1ⰒxGex/Si virtual substrates. Applied Physics Letters, 2001, 79, 3344-3346.	3.3	210
4	Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal–oxide–semiconductor field-effect transistors. Journal of Applied Physics, 2002, 92, 3745-3751.	2.5	161
5	Electrically pumped continuous-wave 13  μm quantum-dot lasers epitaxially grown on on-axis (001)â€% Optics Letters, 2017, 42, 338.	‰â§‰GaF	PISi 127
6	Synthesis of thin-film black phosphorus on a flexible substrate. 2D Materials, 2015, 2, 031002.	4.4	124
7	Dual junction GalnP/GaAs solar cells grown on metamorphic SiGe/Si substrates with high open circuit voltage. IEEE Electron Device Letters, 2006, 27, 142-144.	3.9	122
8	Ge diffusion in Ge metal oxide semiconductor with chemical vapor deposition HfO2 dielectric. Applied Physics Letters, 2005, 87, 051922.	3.3	119
9	Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1304-1309.	7.1	117
10	Impact of dislocation densities on $n+\hat{a}^{\bullet}p$ and $p+\hat{a}^{\bullet}n$ junction GaAs diodes and solar cells on SiGe virtual substrates. Journal of Applied Physics, 2005, 98, 014502.	2.5	112
11	Growth of highly tensile-strained Ge on relaxed InxGa1â°'xAs by metal-organic chemical vapor deposition. Journal of Applied Physics, 2008, 104, .	2.5	111
12	Next-generation mid-infrared sources. Journal of Optics (United Kingdom), 2017, 19, 123001.	2.2	107
13	Hole mobility enhancements in strained Si/Si1â^'yGey p-type metal-oxide-semiconductor field-effect transistors grown on relaxed Si1â^'xGex (x <y) 2001,="" 4246-4248.<="" 79,="" applied="" letters,="" physics="" substrates.="" td="" virtual=""><td>3.3</td><td>100</td></y)>	3.3	100
14	Impact of dislocations on minority carrier electron and hole lifetimes in GaAs grown on metamorphic SiGe substrates. Applied Physics Letters, 2004, 84, 3447-3449.	3.3	93
15	Bright Mid-Infrared Photoluminescence from Thin-Film Black Phosphorus. Nano Letters, 2019, 19, 1488-1493.	9.1	90
16	Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. Nano Letters, 2016, 16, 6931-6938.	9.1	87
17	High Performance Ultrathin GaAs Solar Cells Enabled with Heterogeneously Integrated Dielectric Periodic Nanostructures. ACS Nano, 2015, 9, 10356-10365.	14.6	78
18	Comparison of GaAsP solar cells on GaP and GaP/Si. Applied Physics Letters, 2013, 103, .	3.3	75

#	Article	IF	CITATIONS
19	Investigations of High-Performance GaAs Solar Cells Grown on Ge–Si <tex>\$_1-xhbox Ge_x\$</tex> –Si Substrates. IEEE Transactions on Electron Devices, 2005, 52, 1055-1060.	3.0	70
20	Bioinspired High-Potential Porphyrin Photoanodes. Journal of Physical Chemistry C, 2012, 116, 4892-4902.	3.1	69
21	GaAsP solar cells on GaP/Si with low threading dislocation density. Applied Physics Letters, 2016, 109, .	3.3	69
22	Challenges in epitaxial growth of SiGe buffers on Si (111), (110), and (112). Thin Solid Films, 2006, 508, 136-139.	1.8	68
23	Strained Si/strained Ge dual-channel heterostructures on relaxed Si0.5Ge0.5 for symmetric mobility p-type and n-type metal-oxide-semiconductor field-effect transistors. Applied Physics Letters, 2003, 83, 4202-4204.	3.3	63
24	Implementation of both high-hole and electron mobility in strained Si/strained Si/strained Si _{1-y} Ge _y on relaxed Si _{1-x} Ge _x (x <y) 2003,="" 24,="" 460-462.<="" device="" electron="" ieee="" letters,="" substrate.="" td="" virtual=""><td>3.9</td><td>57</td></y)>	3.9	57
25	Effect of nanodot areal density and period on thermal conductivity in SiGeâ [*] -Si nanodot superlattices. Applied Physics Letters, 2008, 92, .	3.3	57
26	The fabrication of large-area, free-standing GaN by a novel nanoetching process. Nanotechnology, 2011, 22, 045603.	2.6	56
27	Panchromatic polymer–polymer ternary solar cells enhanced by Förster resonance energy transfer and solvent vapor annealing. Journal of Materials Chemistry A, 2015, 3, 18611-18621.	10.3	55
28	Ge n-MOSFETs on lightly doped substrates with high-/spl kappa/ dielectric and TaN gate. IEEE Electron Device Letters, 2006, 27, 175-178.	3.9	53
29	Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1â^'xGex. Journal of Applied Physics, 2003, 94, 2590-2596.	2.5	51
30	Growth of strained Si and strained Ge heterostructures on relaxed Si[sub 1â^'x]Ge[sub x] by ultrahigh vacuum chemical vapor deposition. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 158.	1.6	47
31	Coevaporated Bisquaraine Inverted Solar Cells: Enhancement Due to Energy Transfer and Open Circuit Voltage Control. ACS Photonics, 2015, 2, 86-95.	6.6	47
32	Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10%. Advanced Energy Materials, 2016, 6, 1600660.	19.5	46
33	Solar hydrogen production using epitaxial SrTiO ₃ on a GaAs photovoltaic. Energy and Environmental Science, 2017, 10, 377-382.	30.8	46
34	15.3%-Efficient GaAsP Solar Cells on GaP/Si Templates. ACS Energy Letters, 2017, 2, 1911-1918.	17.4	44
35	Heterogeneous Integration of InGaAs Nanowires on the Rear Surface of Si Solar Cells for Efficiency Enhancement. ACS Nano, 2012, 6, 11074-11079.	14.6	42
36	Effect of rapid thermal annealing on strain in ultrathin strained silicon on insulator layers. Applied Physics Letters, 2003, 83, 875-877.	3.3	41

#	Article	IF	Citations
37	Review Article: Molecular beam epitaxy of lattice-matched InAlAs and InGaAs layers on InP (111)A, (111)B, and (110). Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2017, 35, .	1.2	41
38	Shape transformation of nanoporous GaN by annealing: From buried cavities to nanomembranes. Applied Physics Letters, $2011, 98, \ldots$	3.3	40
39	Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 <inline-formula> <tex-math notation="latex">\${}^{circ}\$</tex-math> </inline-formula> C. IEEE Journal of Photovoltaics, 2016, 6, 1345-1352.	2.5	40
40	InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electronics Letters, 2014, 50, 1226-1227.	1.0	39
41	Waveguide-integrated single-crystalline GaP resonators on diamond. Optics Express, 2014, 22, 13555.	3.4	37
42	Current-Matched III–V/Si Epitaxial Tandem Solar Cells with 25.0% Efficiency. Cell Reports Physical Science, 2020, 1, 100208.	5.6	36
43	Tuning Quantum Dot Luminescence Below the Bulk Band Gap Using Tensile Strain. ACS Nano, 2013, 7, 5017-5023.	14.6	34
44	Strain-driven growth of GaAs (111) quantum dots with low fine structure splitting. Applied Physics Letters, 2014, 105, .	3.3	33
45	20%-efficient epitaxial GaAsP/Si tandem solar cells. Solar Energy Materials and Solar Cells, 2019, 202, 110144.	6.2	33
46	Epitaxial strained germanium p-MOSFETs with HfO/sub 2/ gate dielectric and TaN gate electrode., 0,,.		31
47	Coplanar Integration of Lattice-Mismatched Semiconductors with Silicon by Wafer Bonding Ge/Si[sub 1â°x]Ge[sub x]/Si Virtual Substrates. Journal of the Electrochemical Society, 2004, 151, G443.	2.9	31
48	The interfacial reaction of Ni with (111)Ge, (100)Si0.75Ge0.25 and (100)Si at 400 \hat{A}° C. Thin Solid Films, 2004, 462-463, 151-155.	1.8	31
49	Metamorphic epitaxial materials. MRS Bulletin, 2016, 41, 193-198.	3.5	31
50	Fabrication of ultra-thin strained silicon on insulator. Journal of Electronic Materials, 2003, 32, 972-975.	2.2	29
51	Ultrathin Strained Si-on-Insulator and SiGe-on-Insulator Created using Low Temperature Wafer Bonding and Metastable Stop Layers. Journal of the Electrochemical Society, 2004, 151, G47.	2.9	29
52	Monolithic integration of AlGaInP laser diodes on SiGeâ [•] Si substrates by molecular beam epitaxy. Journal of Applied Physics, 2006, 100, 013103.	2.5	29
53	Self-assembly on (111)-oriented III-V surfaces. Applied Physics Letters, 2011, 99, .	3.3	29
54	Metamorphic GaAsP buffers for growth of wide-bandgap InGaP solar cells. Journal of Applied Physics, 2011, 109, .	2.5	29

#	Article	IF	CITATIONS
55	Large-scale GaP-on-diamond integrated photonics platform for NV center-based quantum information. Journal of the Optical Society of America B: Optical Physics, 2016, 33, B35.	2.1	29
56	Effect of Pt on agglomeration and Ge out diffusion in Ni(Pt) germanosilicide. Journal of Applied Physics, 2005, 98, 033520.	2.5	28
57	Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells as a Cost-Competitive Materials Platform for Ill–V Photovoltaics. ACS Nano, 2017, 11, 992-999.	14.6	27
58	Tensile-strained growth on low-index GaAs. Journal of Applied Physics, 2012, 112, .	2.5	26
59	Effect of thermal processing on mobility in strained Si/strained Si1â^'yGey on relaxed Si1â^'xGex (x <y) 2004,="" 3319-3321.="" 84,="" <="" applied="" from="" in<mml:math="" letters,="" photoluminescence="" physics="" substrates.="" td="" virtual="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.3</td><td>25</td></y)>	3.3	25
60	display="inline"> <mml:msub><mml:mrow ><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:mrow </mml:msub> Ga <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow ><mml:mrow><mml:mn>0.5</mml:mn></mml:mrow></mml:mrow </mml:msub>As/GaP quantum dots</mml:math 	3.2	25
61	coupled to photonic crystal cavities. Physical Review B, 2012, 85, . Self-assembled In0.5Ga0.5As quantum dots on GaP. Applied Physics Letters, 2010, 97, 223110.	3.3	24
62	Congenital Recessive Ichthyosis Unlinked to Loci for Epidermal Transglutaminases. Journal of Investigative Dermatology, 1996, 107, 808-811.	0.7	23
63	Towards high efficiency GaAsP solar cells on (001) GaP/Si. , 2014, , .		23
64	Threading dislocation density characterization in Ill–V photovoltaic materials by electron channeling contrast imaging. Journal of Crystal Growth, 2016, 453, 65-70.	1.5	23
65	Relaxed silicon-germanium on insulator substrate by layer transfer. Journal of Electronic Materials, 2001, 30, L37-L39.	2.2	22
66	Comparison of single junction AlGaInP and GaInP solar cells grown by molecular beam epitaxy. Journal of Applied Physics, 2015, 117 , .	2.5	22
67	Fabrication of silicon on lattice-engineered substrate (SOLES) as a platform for monolithic integration of CMOS and optoelectronic devices. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 235-237.	3.5	21
68	Metamorphic GaAsP and InGaP Solar Cells on GaAs. IEEE Journal of Photovoltaics, 2012, 2, 56-61.	2.5	21
69	Comparison of low-temperature GaN, SiO2, and SiNx as gate insulators on AlGaN∕GaN heterostructure field-effect transistors. Journal of Applied Physics, 2005, 98, 064506.	2.5	20
70	The electrical properties of HfO/sub 2/ dielectric on germanium and the substrate doping effect. IEEE Transactions on Electron Devices, 2006, 53, 2551-2558.	3.0	20
71	Single-junction GaAsP solar cells grown on SiGe graded buffers on Si. Applied Physics Letters, 2013, 191901.	3.3	20
72	Growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation. Applied Physics Letters, $2015,106,.$	3.3	20

#	Article	IF	Citations
73	Impact of Ion Implantation Damage and Thermal Budget on Mobility Enhancement in Strained-Si N-Channel MOSFETs. IEEE Transactions on Electron Devices, 2004, 51, 2136-2144.	3.0	19
74	GaAsP solar cells on GaP substrates by molecular beam epitaxy. Applied Physics Letters, 2012, 101, .	3.3	19
75	High-efficiency AlGaInP solar cells grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109,	3.3	19
76	Toward deterministic construction of low noise avalanche photodetector materials. Applied Physics Letters, 2018, 113, .	3.3	19
77	Molecular beam epitaxy of metamorphic InyGa1â^'yP solar cells on mixed anion GaAsxP1â^'x/GaAs graded buffers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	1.2	18
78	Ultracompact, multifunctional, and highly integrated $3\tilde{A}$ —2 photonic switches. Applied Physics Letters, 2004, 84, 2241-2243.	3.3	17
79	Tensile strained island growth at step-edges on GaAs(110). Applied Physics Letters, 2010, 97, .	3.3	17
80	Increased InAs quantum dot size and density using bismuth as a surfactant. Applied Physics Letters, 2014, 105, .	3.3	17
81	(Al)GaInP/GaAs Tandem Solar Cells for Power Conversion at Elevated Temperature and High Concentration. IEEE Journal of Photovoltaics, 2018, 8, 640-645.	2.5	17
82	2.8 μm emission from type-I quantum wells grown on InAsxP1â^'x/InP metamorphic graded buffers. Applied Physics Letters, 2012, 101, .	3.3	16
83	InGaAs/GaP quantum dot light-emitting diodes on Si. Applied Physics Letters, 2013, 103, 141906.	3.3	16
84	Plasmonically Enhanced Spectral Upconversion for Improved Performance of GaAs Solar Cells under Nonconcentrated Solar Illumination. ACS Photonics, 2018, 5, 4289-4295.	6.6	16
85	Room temperature electroluminescence from light-emitting diodes based on In0.5Ga0.5As/GaP self-assembled quantum dots. Applied Physics Letters, 2012, 100, 251904.	3.3	15
86	Room-temperature mid-infrared quantum well lasers on multi-functional metamorphic buffers. Applied Physics Letters, 2016, 109, .	3.3	15
87	Highly tensile-strained Ge/InAlAs nanocomposites. Nature Communications, 2017, 8, 14204.	12.8	15
88	Highly oriented Ni(Pd)SiGe formation at 400 °C. Journal of Applied Physics, 2005, 97, 104917.	2.5	14
89	Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells. Thin Solid Films, 2010, 518, S76-S79.	1.8	14
90	Relaxed GaP on Si with low threading dislocation density. Applied Physics Letters, 2020, 116, 042102.	3.3	14

#	Article	IF	CITATIONS
91	Hole mobility enhancement in strained-Si/strained-SiGe heterostructure p-MOSFETs fabricated on SiGe-on-insulator (SGOI). Semiconductor Science and Technology, 2004, 19, L48-L51.	2.0	13
92	Fully Depleted Strained-SOI n- and p-MOSFETs on Bonded SGOI Substrates and Study of the SiGe/BOX Interface. IEEE Electron Device Letters, 2004, 25, 147-149.	3.9	13
93	Tensile ${ m GaAs}(111)$ quantum dashes with tunable luminescence below the bulk bandgap. Applied Physics Letters, 2014, 105, .	3.3	12
94	16.8%-Efficient n ⁺ /p GaAs Solar Cells on Si With High Short-Circuit Current Density. IEEE Journal of Photovoltaics, 2019, 9, 660-665.	2.5	12
95	Mobility Enhancement in Dual-Channel P-MOSFETs. IEEE Transactions on Electron Devices, 2004, 51, 1424-1431.	3.0	11
96	Electron mobility characteristics of n-channel metal-oxide-semiconductor field-effect transistors fabricated on Ge-rich single- and dual-channel SiGe heterostructures. Journal of Applied Physics, 2004, 95, 1550-1555.	2.5	11
97	Positive Temperature Coefficient of Impact Ionization in Strained-Si. IEEE Transactions on Electron Devices, 2005, 52, 1627-1633.	3.0	11
98	Metamorphic 2.1-2.2 eV InGaP solar cells on GaP substrates. Applied Physics Letters, 2014, 104, .	3.3	11
99	Defect selective etching of GaAs P1â^ photovoltaic materials. Journal of Crystal Growth, 2014, 404, 140-145.	1.5	11
100	Mid-infrared electroluminescence from InAs type-I quantum wells grown on InAsP/InP metamorphic buffers. Journal of Applied Physics, 2015, 118 , .	2.5	11
101	Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	1.2	11
102	Oxide heterostructures for high density 2D electron gases on GaAs. Journal of Applied Physics, 2018, 123, .	2.5	11
103	2.0–2.2ÂeV AlGaInP solar cells grown by molecular beam epitaxy. Solar Energy Materials and Solar Cells, 2021, 219, 110774.	6.2	11
104	Improved hole mobilities and thermal stability in a strainedâ€Siâ^•strainedâ€Si1â^'yGeyâ^•strainedâ€Si heterostructure grown on a relaxed Si1â^'xGex buffer. Applied Physics Letters, 2005, 86, 192104.	3.3	10
105	Growth and properties of AlGaInP resonant cavity light emitting diodes on Geâ [•] SiGeâ [•] Si substrates. Journal of Applied Physics, 2005, 97, 034504.	2.5	10
106	Bulk AllnAs on InP(111) as a novel material system for pure single photon emission. Optics Express, 2016, 24, 23198.	3.4	10
107	Direct-Gap 2.1–2.2 eV AlInP Solar Cells on GaInAs/GaAs Metamorphic Buffers. IEEE Journal of Photovoltaics, 2016, 6, 571-577.	2.5	10
108	High-Quality GaAs Planar Coalescence over Embedded Dielectric Microstructures Using an All-MBE Approach. Crystal Growth and Design, 2019, 19, 3085-3091.	3.0	10

#	Article	IF	Citations
109	Low-threshold InP quantum dot and InGaP quantum well visible lasers on silicon (001). Optica, 2021, 8, 1495.	9.3	10
110	On the mechanism of ion-implanted As diffusion in relaxed SiGe. Applied Surface Science, 2004, 224, 59-62.	6.1	9
111	Effects of growth temperature and device structure on GaP solar cells grown by molecular beam epitaxy. Applied Physics Letters, 2015, 106, .	3.3	9
112	Rare-Earth Monopnictide Alloys for Tunable, Epitaxial, Designer Plasmonics. ACS Photonics, 2018, 5, 3051-3056.	6.6	9
113	Graded buffer Bragg reflectors with high reflectivity and transparency for metamorphic optoelectronics. Journal of Applied Physics, 2021, 129, 173102.	2.5	9
114	Enhanced room temperature infrared LEDs using monolithically integrated plasmonic materials. Optica, 2020, 7, 1355.	9.3	9
115	Controlling quantum dot energies using submonolayer bandstructure engineering. Applied Physics Letters, 2014, 105, 081103.	3.3	8
116	Atomic structure and stoichiometry of $\ln(Ga)As/GaAs$ quantum dots grown on an exact-oriented $GaP/Si(001)$ substrate. Applied Physics Letters, 2016, 108, .	3.3	8
117	AlGaInP/GaAs tandem solar cells for power conversion at $400 \hat{A}^{\circ} \text{C}$ and high concentration. AIP Conference Proceedings, 2017, , .	0.4	8
118	InP quantum dots for dislocation-tolerant, visible light emitters on Si. Applied Physics Letters, 2020, 117, .	3.3	8
119	High performance ultrathin GaAs solar cells. , 2015, , .		7
120	GaAsP/Si solar cells and tunnel junctions for III-V/Si tandem devices. , 2016, , .		7
121	Molecular beam epitaxy growth of germanium junctions for multi-junction solar cell applications. Journal Physics D: Applied Physics, 2016, 49, 465105.	2.8	7
122	Surfactant-assisted growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation. Applied Physics Letters, 2016, 108, .	3.3	7
123	Low-Intensity High-Temperature (LIHT) Solar Cells for Venus Atmosphere. IEEE Journal of Photovoltaics, 2018, 8, 1621-1626.	2.5	7
124	10-Fold-Stack Multilayer-Grown Nanomembrane GaAs Solar Cells. ACS Photonics, 2018, 5, 2786-2790.	6.6	7
125	Impact ionization in strained-Si/SiGe heterostructures., 0,,.		6

Composition-dependent structural transition in epitaxial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mrow/*<mml:mrow/* + <mml:mrow/* + <mml:

126

⁸

#	Article	IF	Citations
127	Channel Engineering of SiGe-Based Heterostructures for High Mobility MOSFETs. Materials Research Society Symposia Proceedings, 2001, 686, 1.	0.1	5
128	In situ cleaning effect on the electrical properties of Ge MOS devices by Ar gas anneal. IEEE Transactions on Electron Devices, 2006, 53, 2661-2664.	3.0	5
129	Growth rate and surfactant-assisted enhancements of rare-earth arsenide InGaAs nanocomposites for terahertz generation. APL Materials, 2017, 5, 096106.	5.1	5
130	Design and growth of multi-functional InAsP metamorphic buffers for mid-infrared quantum well lasers on InP. Journal of Applied Physics, 2019, 125, .	2.5	5
131	Challenges of relaxed <i>n</i> -type GaP on Si and strategies to enable low threading dislocation density. Journal of Applied Physics, 2021, 130, 243104.	2.5	5
132	Strained-Si-on-Insulator (SSOI) and SiGe-on-Insulator (SGOI): Fabrication Obstacles and Solutions. Materials Research Society Symposia Proceedings, 2002, 745, 471.	0.1	4
133	GaAsP solar cells on GaP/Si grown by molecular beam epitaxy. , 2013, , .		4
134	Germanium solar cells grown by molecular beam epitaxy for lattice-matched, four-junction solar cells. , $2015, , .$		4
135	Anomalous tilting in InGaAs graded buffers from dislocation sources at wafer edges. Journal of Crystal Growth, 2019, 512, 169-175.	1.5	4
136	Improving the performance of GaInP solar cells through rapid thermal annealing and delta doping. Solar Energy Materials and Solar Cells, 2022, 241, 111725.	6.2	4
137	Strained Ge Channel p-type MOSFETs Fabricated on Si1â^'xGex/Si Virtual Substrates. Materials Research Society Symposia Proceedings, 2001, 686, 1.	0.1	3
138	Graphitized carbon on GaAs(100) substrates. Applied Physics Letters, 2011, 98, 073113.	3.3	3
139	Selective Area Heteroepitaxy of p-i-n Junction GaP Nanopillar Arrays on Si (111) by MOCVD. IEEE Journal of Quantum Electronics, 2022, 58, 1-6.	1.9	3
140	Tensile strained III-V self-assembled nanostructures on a (110) surface. Proceedings of SPIE, 2010, , .	0.8	2
141	Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems. Nanotechnology, 2014, 25, 465702.	2.6	2
142	Modeling wide bandgap GalnP photovoltaic cells for conversion efficiencies up to 16.5%., 2015,,.		2
143	Crystals aligned through graphene. Nature, 2017, 544, 301-302.	27.8	2
144	Epitaxial GaAsP/Si Tandem Solar Cells with Integrated Light Trapping. , 2019, , .		2

#	Article	IF	CITATIONS
145	Epitaxial GaAsP/Si Solar Cells with High Quantum Efficiency. , 2020, , .		2
146	Relaxed Silicon-Germanium on Insulator (SGOI). Materials Research Society Symposia Proceedings, 2001, 686, 1.	0.1	1
147	Hybrid Valence Bands in Strained-Layer Heterostructures grown on Relaxed SiGe Virtual Substrates. Materials Research Society Symposia Proceedings, 2003, 768, 1101.	0.1	1
148	Improved thermal stability and hole mobilities in a strained-Si/strained-Si1â^'yGey/strained-Si heterostructure grown on a relaxed Si1â^'xGex buffer. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 124-125, 102-106.	3.5	1
149	Dislocation engineering in strained mos materials. , 2005, , .		1
150	High-speed nano-optical photodetector for free space communication. , 2007, , .		1
151	Thermal stability of nonhydrogenated multilayer amorphous carbon prepared by the filtered cathodic vacuum arc technique. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2007, 25, 421-424.	2.1	1
152	Molecular beam epitaxy approach to the graphitization of GaAs(100) surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, 03C103.	1.2	1
153	Growth of metamorphic GaAsP solar cells on GaP. , 2012, , .		1
154	Improving the performance of P3HT/PCBM solar cells with squaraine dye. Proceedings of SPIE, 2013, , .	0.8	1
155	2.19 eV InGaP solar cells on GaP substrates. , 2013, , .		1
156	Effect of substrate effcut angle on AlGaInP and GaInP solar cells grown by molecular beam epitaxy. , 2014, , .		1
157	Fabrication of GaP disk resonator arrays coupled to nitrogen-vacancy centers in diamond. Proceedings of SPIE, 2014, , .	0.8	1
158	Solar Cells: Quaternary Organic Solar Cells Enhanced by Cocrystalline Squaraines with Power Conversion Efficiencies >10% (Adv. Energy Mater. 21/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
159	Radiation resistant of upright metamorphic GaInP/GaInAs/Ge triple junction solar cells for space use. , 2017, , .		1
160	Computational study of the effect of photovoltaic (PV) module parameters on stress development in silicon under static loading. , 2017 , , .		1
161	Notice of Removal Measurements and modeling of III-V solar cells at high temperatures up to 400 $\hat{A}^{\circ}C.$, 2017, , .		1
162	Towards High-Efficiency GaAsP/Si Tandem Cells. , 2017, , .		1

#	Article	IF	CITATIONS
163	Solar Cell Analysis Under Venus Atmosphere Conditions. , 2018, , .		1
164	Delta-doping for enhanced tunnel junction performance and thermal stability., 2019,,.		1
165	Metamorphic 1.7 eV InGaP front- and rear-junction solar cells with high open- circuit voltage. , 2021, , .		1
166	Low Spatial Coherence Electrically Pumped Semiconductor Laser for Speckle-Free Full-Field Imaging. , 2015, , .		1
167	Importance of Long-lifetime n-GaInP for High-efficiency GaInP Solar Cells Grown by MBE. , 2020, , .		1
168	Effects of Graded Buffer Design and Active Region Structure on GaAsP Single-Junction Solar Cells Grown on GaP/Si Templates. , 2020, , .		1
169	Delta-Doping for Enhanced III-V Tunnel Junction Performance. IEEE Journal of Photovoltaics, 2022, 12, 976-981.	2.5	1
170	Growth and Properties of AlGaInP Resonant Cavity Light Emitting Diodes (RCLEDs)on Ge/SiGe/Si Substrates. Materials Research Society Symposia Proceedings, 2003, 799, 111.	0.1	0
171	Growth of Metamorphic InGaP for Wide-Bandgap Photovoltaic Junction by MBE. Materials Research Society Symposia Proceedings, 2010, 1268, 1.	0.1	0
172	Metamorphic InGaP on GaAs and GaP for wide-bandgap photovoltaic junctions. , 2010, , .		0
173	Si/Ge nanodot superlattices for Si-based photovoltaics. , 2010, , .		0
174	Dislocations and other strain-induced defects in silicon–germanium (SiGe) nanostructures. , 2011, , 338-360.		0
175	Single NV Zero-Phonon Line Emission into Waveguide-Coupled GaP-on-Diamond Disk Resonators. , 2015, , .		0
176	Direct-gap 2.1–2.2 eV AlInP solar cells on GaInAs/GaAs metamorphic buffers. , 2015, , .		0
177	Device and material characteristics of GalnP solar cells grown on Ge substrates by molecular beam epitaxy. , $2016, , .$		0
178	ICSI-9, Montréal 2015: Silicon for now and beyond. Thin Solid Films, 2016, 602, 1-2.	1.8	0
179	Mid-infrared quantum well lasers on multi-functional metamorphic buffers. , 2017, , .		0
180	Multilayer-Grown Ultrathin Nanostructured GaAs Solar Cells., 2017,,.		0

#	Article	IF	CITATIONS
181	Selective area epitaxy of GaP nanowire array on Si (111) by MOCVD., 2019,,.		0
182	Comparison of 1.9 eV InGaP front- and rear-junction solar cells grown on Si. , 2021, , .		0
183	Reducing the dependence of threading dislocation density on doping for GaAsP/GaP on Si. , 2021, , .		0
184	Hybrid Valence Bands in Strained-Layer Heterostructures grown on Relaxed SiGe Virtual Substrates. Materials Research Society Symposia Proceedings, 2003, 765, 1.	0.1	0
185	Photoluminescence from In0.5Ga0.5P/GaP quantum dots coupled to photonic crystal cavities. , 2011, , .		0
186	Heterogeneous Integration of III-V on Si: overcoming the lattice-mismatch barrier via the 1D route. , 2012, , .		0
187	InAs Quantum Dot Growth Using Bismuth as a Surfactant for Optoelectronic Applications. , 2013, , .		0
188	Waveguiding in polycrystalline GaP grown on SiO2 by molecular beam deposition. , 2014, , .		0
189	New Sources and Sensors for Mid- to Far-IR Optical Sensing. , 2017, , .		0