He-Ping Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903755/publications.pdf

Version: 2024-02-01

236925 233421 2,426 101 25 45 citations h-index g-index papers 104 104 104 1778 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 2014, 98, 5387-5396.	3.6	258
2	Novel mutation breeding method for i>Streptomyces avermitilis / i>using an atmospheric pressure glow discharge plasma. Journal of Applied Microbiology, 2010, 108, 851-858.	3.1	126
3	Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches. Journal Physics D: Applied Physics, 2003, 36, 1084-1096.	2.8	110
4	Genetic effects of radio-frequency, atmospheric-pressure glow discharges with helium. Applied Physics Letters, 2008, 92, .	3.3	107
5	Rapid Mutation of Spirulina platensis by a New Mutagenesis System of Atmospheric and Room Temperature Plasmas (ARTP) and Generation of a Mutant Library with Diverse Phenotypes. PLoS ONE, 2013, 8, e77046.	2.5	98
6	Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Applied Microbiology and Biotechnology, 2015, 99, 5639-5646.	3.6	92
7	A salt tolerant Enterobacter cloacae mutant for bioaugmentation of petroleum- and salt-contaminated soil. Biochemical Engineering Journal, 2010, 49, 201-206.	3.6	86
8	Characteristics of hydrogen production of an Enterobacter aerogenes mutant generated by a new atmospheric and room temperature plasma (ARTP). Biochemical Engineering Journal, 2011, 55, 17-22.	3.6	80
9	Manipulation of Lipase Activity by the Helium Radioâ€Frequency, Atmosphericâ€Pressure Glow Discharge Plasma Jet. Plasma Processes and Polymers, 2011, 8, 224-229.	3.0	70
10	Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. Journal Physics D: Applied Physics, 2007, 40, 2010-2017.	2.8	65
11	Three Dimensional Modeling of the Plasma Spray Process. Journal of Thermal Spray Technology, 2007, 16, 245-260.	3.1	61
12	Title is missing!. Plasma Chemistry and Plasma Processing, 2002, 22, 27-58.	2.4	58
13	Three-dimensional modelling of a dc non-transferred arc plasma torch. Journal Physics D: Applied Physics, 2001, 34, L99-L102.	2.8	57
14	Electrical Features of Radio-frequency, Atmospheric-pressure, Bare-metallic-electrode Glow Discharges. Plasma Chemistry and Plasma Processing, 2007, 27, 529-545.	2.4	45
15	A numerical model of non-equilibrium thermal plasmas. I. Transport properties. Physics of Plasmas, 2013, 20, 033508.	1.9	43
16	Array of surface-confined glow discharges in atmospheric pressure helium: Modes and dynamics. Applied Physics Letters, 2014, 104, .	3.3	40
17	The energy tree: Non-equilibrium energy transfer in collision-dominated plasmas. Physics Reports, 2018, 770-772, 1-45.	25.6	38
18	The reactive thermal conductivity for a two-temperature plasma. International Journal of Heat and Mass Transfer, 2003, 46, 1443-1454.	4.8	35

#	Article	lF	Citations
19	Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension. High Voltage, 2017, 2, 188-199.	4.7	35
20	Heat transfer and fluid flow in a high-intensity free-burning arc: an improved modeling approach. International Journal of Heat and Mass Transfer, 2001, 44, 2541-2553.	4.8	34
21	Sheath and arc-column voltages in high-pressure arc discharges. Journal Physics D: Applied Physics, 2012, 45, 355201.	2.8	34
22	Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection. Thin Solid Films, 2001, 390, 175-180.	1.8	32
23	Strain improvement for enhanced production of cellulase in Trichoderma viride. Applied Biochemistry and Microbiology, 2011, 47, 53-58.	0.9	29
24	Enhanced Biological Behavior of In Vitro Human Gingival Fibroblasts on Cold Plasma-Treated Zirconia. PLoS ONE, 2015, 10, e0140278.	2.5	29
25	A numerical model of non-equilibrium thermal plasmas. II. Governing equations. Physics of Plasmas, 2013, 20, 033509.	1.9	27
26	Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment. Clinical Oral Investigations, 2020, 24, 1465-1477.	3.0	26
27	Discharge characteristics of atmospheric-pressure radio-frequency glow discharges with argon/nitrogen. Applied Physics Letters, 2006, 89, 161504.	3.3	25
28	Studies on the Physical Characteristics of the Radio-Frequency Atmospheric-Pressure Glow Discharge Plasmas for the Genome Mutation of Methylosinus trichosporium. IEEE Transactions on Plasma Science, 2012, 40, 2853-2860.	1.3	25
29	Effects and mechanisms of cold atmospheric plasma on skin wound healing of rats. Contributions To Plasma Physics, 2019, 59, 92-101.	1.1	24
30	Characteristics of atmospheric-pressure, radio-frequency glow discharges operated with argon added ethanol. Journal of Applied Physics, 2007, 101, 123302.	2.5	21
31	Effects of a modified cold atmospheric plasma jet treatment on resin-dentin bonding. Dental Materials Journal, 2018, 37, 798-804.	1.8	21
32	Three-dimensional, nonequilibrium effects in a high-intensity blown arc. IEEE Transactions on Plasma Science, 2005, 33, 402-403.	1.3	20
33	Three-dimensional modelling of the flow and heat transfer in a laminar non-transferred arc plasma torch. Chinese Physics B, 2002, 11 , 44-49.	1.3	19
34	Promotion of Wound Healing of Genetic Diabetic Mice Treated by a Cold Atmospheric Plasma Jet. IEEE Transactions on Plasma Science, 2019, 47, 4848-4860.	1.3	19
35	<i>In situ</i> measurement of the two-dimensional temperature field of a dual-jet direct-current arc plasma. Review of Scientific Instruments, 2016, 87, 033502.	1.3	18
36	Three-dimensional flow and heat transfer in thermal plasma systems. Surface and Coatings Technology, 2003, 171, 124-133.	4.8	17

#	Article	IF	Citations
37	Characteristics of radio-frequency, atmospheric-pressure glow discharges with air using bare metal electrodes. Applied Physics Letters, 2006, 89, 161502.	3.3	17
38	The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes. Plasma Sources Science and Technology, 2007, 16, 290-296.	3.1	17
39	Characteristics of kilohertz-ignited, radio-frequency atmospheric-pressure dielectric barrier discharges in argon. Applied Physics Letters, 2009, 95, 201501.	3.3	17
40	Non-equilibrium synergistic effects in atmospheric pressure plasmas. Scientific Reports, 2018, 8, 4783.	3.3	17
41	Discharge features of radio-frequency, atmospheric-pressure cold plasmas under an intensified local electric field. Journal Physics D: Applied Physics, 2008, 41, 202001.	2.8	16
42	Culture characteristics of the atmospheric and room temperature plasma-mutated Spirulina platensis mutants in CO2 aeration culture system for biomass production. Journal of Bioscience and Bioengineering, 2015, 120, 438-443.	2.2	16
43	Evaluation of the Two-Dimensional Temperature Field and Instability of a Dual-Jet DC Arc Plasma Based on the Image Chain Coding Technique. IEEE Transactions on Plasma Science, 2011, 39, 2884-2885.	1.3	15
44	Particle-in-cell and Monte Carlo collision simulations of the cathode sheath in an atmospheric direct-current arc discharge. Plasma Sources Science and Technology, 2016, 25, 05LT01.	3.1	14
45	Numerical and Experimental Studies on the Interactions Between the Radio-Frequency Glow Discharge Plasma Jet and the Shielding Gas at Atmosphere. IEEE Transactions on Plasma Science, 2018, 46, 2766-2775.	1.3	14
46	Modeling on the Momentum and Heat/Mass Transfer Characteristics of an Argon Plasma Jet Issuing into Air Surroundings and Interacting with a Counter-Injected Argon Jet. Plasma Chemistry and Plasma Processing, 2011, 31, 373-392.	2.4	13
47	Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Scientific Reports, 2020, 10, 14298.	3.3	13
48	Kinetic analysis of direct-current driven microdischarges with thermo-field electron emission at atmospheric pressure. Journal Physics D: Applied Physics, 2020, 53, 455201.	2.8	13
49	Volt-Ampere and Thermal Features of a Direct-Current Dual-Jet Plasma Generator With a Cold Gas Injection. IEEE Transactions on Plasma Science, 2010, 38, 2906-2913.	1.3	12
50	Effect of a floating electrode on an atmospheric-pressure non-thermal arc discharge. Journal of Applied Physics, $2011,110,110$	2.5	12
51	Combined diffusion coefficients for a mixture of three ionized gases. Plasma Sources Science and Technology, 2014, 23, 065044.	3.1	12
52	Purification of terbium by means of argon and hydrogen plasma arc melting. Journal of Alloys and Compounds, 2016, 659, 1-7.	5 . 5	12
53	Different behavior of human gingival fibroblasts on surface modified zirconia: A comparison between ultraviolet (UV) light and plasma. Dental Materials Journal, 2019, 38, 756-763.	1.8	12
54	Effects of the shielding cylinder and substrate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet. Journal of Applied Physics, 2010, 107, .	2.5	11

#	Article	IF	CITATIONS
55	Comparison of the transport properties of two-temperature argon plasmas calculated using different methods. Plasma Sources Science and Technology, 2015, 24, 035011.	3.1	11
56	Dual Torch Plasma Arc Furnace for Medical Waste Treatment. Plasma Science and Technology, 2007, 9, 709-712.	1.5	10
57	Influences of gas flowing on the features of a helium radio-frequency atmospheric-pressure glow discharge. Applied Thermal Engineering, 2014, 72, 82-89.	6.0	10
58	Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges. Physics of Plasmas, 2015, 22, .	1.9	10
59	Three-Dimensional Non-equilibrium Modeling on the Characteristics of the Dual-Jet Direct-Current Arc Plasmas. Plasma Chemistry and Plasma Processing, 2015, 35, 75-89.	2.4	10
60	Physicochemical properties of the AC-excited helium discharges using a water electrode. Plasma Science and Technology, 2018, 20, 075403.	1.5	10
61	Quantitative evaluation of DNA damage caused by atmospheric and room-temperature plasma (ARTP) and other mutagenesis methods using a rapid umu-microplate test protocol for microbial mutation breeding. Chinese Journal of Chemical Engineering, 2021, 39, 205-210.	3.5	10
62	Characteristics of Atmospheric Room-Temperature Argon Plasma Streams Produced Using a Dielectric Barrier Discharge Generator With a Cylindrical Screwlike Inner Electrode. IEEE Transactions on Plasma Science, 2012, 40, 2172-2178.	1.3	9
63	An Atmospheric Cold Plasma Jet With a Good Uniformity, Robust Stability, and High Intensity Over a Large Area. IEEE Transactions on Plasma Science, 2014, 42, 2470-2471.	1.3	9
64	Radio-Frequency Glow Discharges of Different Gases Using Bare Metallic Electrodes at Atmospheric Pressure. IEEE Transactions on Plasma Science, 2008, 36, 1418-1419.	1.3	8
65	Volt–Ampere and Thermal Characteristics of a Direct-Current Dual-Jet Plasma Generator. IEEE Transactions on Plasma Science, 2009, 37, 1129-1135.	1.3	8
66	Modeling of the heat transfer and flow features of the thermal plasma reactor with counter-flow gas injection. International Journal of Heat and Mass Transfer, 2009, 52, 760-766.	4.8	8
67	One-Dimensional Modeling on the Asymmetric Features of a Radio-Frequency Atmospheric Helium Glow Discharge Produced Using a Co-Axial-Type Plasma Generator. Plasma Chemistry and Plasma Processing, 2012, 32, 859-874.	2.4	8
68	Influences of the inner diameter of the solid shielding tube on the characteristics of the radio-frequency cold atmospheric plasma jet. Plasma Science and Technology, 2019, 21, 095402.	1.5	8
69	Beam-assisted extraction of charged particles from a decaying plasma. Plasma Sources Science and Technology, 2020, 29, 025010.	3.1	8
70	Validated two-dimensional modeling of short carbon arcs: Anode and cathode spots. Physics of Plasmas, 2020, 27, .	1.9	8
71	Radio-Frequency, Atmospheric-Pressure Glow Discharges: Producing Methods, Characteristics and Applications in Bio-Medical Fields. AIP Conference Proceedings, 2008, , .	0.4	7
72	Influences of the cold atmospheric plasma jet treatment on the properties of the demineralized dentin surfaces. Plasma Science and Technology, 2018, 20, 044010.	1.5	7

#	Article	IF	CITATIONS
73	Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates. Plasma Science and Technology, 2019, 21, 045402.	1.5	7
74	Modeling of the charged particle transport process in a decaying plasma with a Î-type electrode configuration. Japanese Journal of Applied Physics, 2021, 60, SAAB05.	1.5	7
75	Three-dimensional effects inside a dc arc plasma torch. IEEE Transactions on Plasma Science, 2005, 33, 400-401.	1.3	6
76	Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration. Plasma Science and Technology, 2019, 21, 055401.	1.5	6
77	Time-dependent reactive oxygen species inhibit Streptococcus mutans growth on zirconia after a helium cold atmospheric plasma treatment. Materials Science and Engineering C, 2021, 120, 111633.	7.3	6
78	Key chemical reaction pathways in a helium-nitrogen atmospheric glow discharge plasma based on a global model coupled with the genetic algorithm and dynamic programming. Journal of Applied Physics, 2021, 129, 133302.	2.5	6
79	Promotion of the Wound Healing of <i>in vivo</i> Rabbit Wound Infected With Methicillin-Resistant <i>Staphylococcus aureus</i> Treated by a Cold Atmospheric Plasma Jet. IEEE Transactions on Plasma Science, 2021, 49, 2329-2339.	1.3	6
80	Effects of a helium cold atmospheric plasma on bonding to artificial caries-affected dentin. Dental Materials Journal, 2022, 41, 101-109.	1.8	6
81	Degradation of Organic Compounds Using a 2-D Capillary Discharge Array in Water. IEEE Transactions on Plasma Science, 2014, 42, 2628-2629.	1.3	5
82	Dimensionless factors for an alternating-current non-thermal arc plasma. Physics of Plasmas, 2016, 23, 120707.	1.9	5
83	Effects of Liquid Electrical Conductivity on the Electrical and Optical Characteristics of an AC-Excited Argon Gas–Liquid-Phase Discharge. IEEE Transactions on Plasma Science, 2018, 46, 2856-2864.	1.3	5
84	On the Correct Form of the Saha Equation for Two-Temperature Plasmas. Chinese Physics Letters, 1999, 16, 193-195.	3.3	4
85	Characterization of cold atmospheric plasma-modified dentin collagen. Dental Materials Journal, 2022, 41, 473-480.	1.8	4
86	Two-dimensional modelling of a DC arc plasma furnace with opposite cathode and anode. Progress in Computational Fluid Dynamics, 2008, 8, 424.	0.2	3
87	Studies on the mutation breeding mechanism of Streptomyces avermitilis by a novel atmospheric-pressure, low-temperature discharge plasma. Journal of Biotechnology, 2008, 136, S22.	3.8	2
88	Note: Stability control of intermediate frequencies of a three laser far-infrared polarimeter-interferometer system. Review of Scientific Instruments, 2016, 87, 126102.	1.3	1
89	Analyses on the non-equilibrium transport processes in a free-burning argon arc plasma under different operating conditions. Plasma Sources Science and Technology, 0, , .	3.1	1
90	A Novel Method for Estimating the Dosage of Cold Atmospheric Plasmas in Plasma Medical Applications. Applied Sciences (Switzerland), 2021, 11, 11135.	2.5	1

#	Article	IF	CITATIONS
91	Applications of Cold Atmospheric Plasmas (CAPs) in Agriculture: A Brief Review and Novel Development of a Radio-Frequency CAP Jet Generator for Plant Mutation. Plasma Science and Technology, 0, , .	1.5	1
92	Energy exchange modulation for selective control of gas temperature and electron number density in cold atmospheric plasmas. Plasma Sources Science and Technology, 0, , .	3.1	1
93	Aortic valve opening in mock-loop with continuous-flow left ventricular assist device. International Journal of Artificial Organs, 0, , 039139882211118.	1.4	1
94	Numerical simulation of radio frequency atmospheric pressure glow discharges for the applications in the microbial genome mutation. , 2012 , , .		0
95	Atmospheric room-temperature helium plasma streams produced using a dielectric barrier discharge generator with a honeycomb-like inner electrode. , 2012, , .		0
96	Studies on the electrical characteristics of a radio-frequency atmospheric-pressure plasma jet array. , 2012, , .		0
97	Integrated experimental and zerodimensional numerical analysis of an atmospheric pressure reactive argon plasma jet generated by dielectric barrier discharges. , 2012, , .		0
98	Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method. Journal of Physics Condensed Matter, 2018, 30, 384001.	1.8	0
99	Key Parameter Measurements of the Low-Pressure Gas Discharge Plasmas Used for Studying the Ion Extraction Process., 2017,, 521-531.		0
100	A Micro-Scale Low-Temperature Atmospheric Micro-Plasma Jet with Hollow-Cone Electrodes. , 2022, , .		0
101	Microwave Diagnostics of Cold Atmospheric Pressure Plasma Jets Based on the Radiation Pattern Measurements. IEEE Transactions on Plasma Science, 2022, 50, 1669-1674.	1.3	o