Olivier Aleveque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903300/publications.pdf

Version: 2024-02-01

214721 361296 2,240 51 20 47 citations h-index g-index papers 53 53 53 2618 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	A self-assembled tetrathiafulvalene box. Organic Chemistry Frontiers, 2021, 8, 883-890.	2.3	4
2	Optically Controlled Electron Transfer in a Re ^I Complex. Chemistry - A European Journal, 2021, 27, 5399-5403.	1.7	6
3	Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDTâ∈Based Nonâ∈Fullerene Acceptors with PCE10 as Donor Polymer. Advanced Energy Materials, 2021, 11, 2100839.	10.2	23
4	Alternative voltammetry on self-assembled monolayers: An original approach to estimate the electrochemical electron-transfer rate constants when electroactive adsorbed species interact. Journal of Electroanalytical Chemistry, 2020, 873, 114414.	1.9	6
5	BT-2-BOX: An Assembly toward Multimodal and Multilevel Molecular System Simple as a Breeze. Journal of Physical Chemistry C, 2019, 123, 11823-11832.	1.5	7
6	Real-time absorption spectroelectrochemistry: From solution to monolayer. Current Opinion in Electrochemistry, 2019, 15, 34-41.	2.5	8
7	Triphenylamine-Based Push–Pull σ–C ₆₀ Dyad As Photoactive Molecular Material for Single-Component Organic Solar Cells: Synthesis, Characterizations, and Photophysical Properties. Chemistry of Materials, 2018, 30, 3474-3485.	3.2	58
8	Thienylene vinylene dimerization: from solution to self-assembled monolayer on gold. Nanoscale, 2018, 10, 1613-1616.	2.8	5
9	Absorption Spectroelectrochemistry on Mixed Perylenediimideâ€Based Selfâ€Assembled Monolayers: Nonâ€Linear Dependence of Absorbance versus Surface Coverage. ChemElectroChem, 2017, 4, 601-606.	1.7	8
10	Emission Spectroelectrochemistry: Cell Design and Setup. , 2017, , 1-19.		4
11	Lithium nâ€Doped Polyaniline as a Highâ€Performance Electroactive Material for Rechargeable Batteries. Angewandte Chemie - International Edition, 2017, 56, 1553-1556.	7.2	99
12	Controlling the Host–Guest Interaction Mode through a Redox Stimulus. Angewandte Chemie - International Edition, 2017, 56, 16272-16276.	7.2	91
13	Controlling the Host–Guest Interaction Mode through a Redox Stimulus. Angewandte Chemie, 2017, 129, 16490-16494.	1.6	25
14	13 metastable states arising from a simple multifunctional unimolecular system. Dyes and Pigments, 2017, 137, 490-498.	2.0	5
15	Highly Stable Perylenediimideâ€Based Selfâ€Assembled Monolayers Studied with Spectroelectrochemistry. ChemElectroChem, 2016, 3, 887-891.	1.7	13
16	A generalized lateral interactions function to fit voltammetric peaks of self-assembled monolayers. Electrochemistry Communications, 2016, 67, 73-79.	2.3	17
17	A fascinating multifaceted redox-active chelating ligand: introducing the N,N′-dimethyl-3,3′-biquinoxalinium "methylbiquinoxen―platform. Chemical Science, 2016, 7, 3820-38	328 ^{3.7}	8
18	Tetrathiafulvalene-based azine ligands for anion and metal cation coordination. Beilstein Journal of Organic Chemistry, 2015, 11, 1379-1391.	1.3	6

#	Article	IF	Citations
19	Glycoluril–tetrathiafulvalene molecular clips: on the influence of electronic and spatial properties for binding neutral accepting guests. Beilstein Journal of Organic Chemistry, 2015, 11, 1023-1036.	1.3	23
20	Spectroelectrochemistry on electroactive self-assembled monolayers: Cyclic voltammetry coupled to spectrophotometry. Electrochemistry Communications, 2015, 51, 108-112.	2.3	21
21	Push–Pull Triphenylamine Chromophore Syntheses and Optoelectronic Characterizations. ChemPlusChem, 2015, 80, 697-703.	1.3	14
22	Electroactive self-assembled monolayers: A versatile function to fit symmetric voltammetric peak. Electrochemistry Communications, 2015, 51, 137-143.	2.3	11
23	The stepwise oxidation of indolino[2,1-b]oxazolidine derivatives. Journal of Electroanalytical Chemistry, 2015, 749, 1-9.	1.9	11
24	Huge Electro-/Photo-/Acidoinduced Second-Order Nonlinear Contrasts From Multiaddressable Indolinooxazolodine. Journal of Physical Chemistry B, 2015, 119, 6758-6765.	1.2	22
25	Indolinooxazolidine: A Versatile Switchable Unit. Journal of Physical Chemistry B, 2015, 119, 307-315.	1.2	31
26	A bridged low band gap A–D–A quaterthiophene as efficient donor for organic solar cells. Journal of Materials Chemistry C, 2015, 3, 390-398.	2.7	13
27	Electroactive mixed self-assembled monolayers: A numerical overview of phase segregations. Electrochemistry Communications, 2014, 45, 17-22.	2.3	2
28	Nitroxyl radical self-assembled monolayers: Generalized lateral interactions model used with binary electrolyte mixture. Electrochemistry Communications, 2013, 28, 122-126.	2.3	4
29	Electroactive mixed self-assembled monolayers: Lateral interactions model updated to interactions between redox and non-redox species. Electrochemistry Communications, 2013, 34, 165-169.	2.3	10
30	Electrocatalytic activity of nitroxyl mixed self-assembled monolayers: combined effects of the nanoscale organization and the composition. Soft Matter, 2012, 8, 3875.	1.2	16
31	TEMPO Mixed SAMs: Electrocatalytic Efficiency versus Surface Coverage. Langmuir, 2012, 28, 13741-13745.	1.6	26
32	Evidence of electrochemical transduction of cation recognition by TEMPO derivatives. New Journal of Chemistry, 2012, 36, 546-549.	1.4	2
33	Revisiting the determination of full steady-state coverage of redox centers on self-assembled monolayers. Electrochemistry Communications, 2012, 16, 6-9.	2.3	15
34	Intermolecular interactions in self-assembled monolayers of tetrathiafulvalene derivatives. Physical Chemistry Chemical Physics, 2011, 13, 2118-2120.	1.3	23
35	Impact of the Nanoscale Organization of Nitroxyl Mixed Self-Assembled Monolayers on their Electrocatalytic Behaviour. ChemPhysChem, 2011, 12, 769-771.	1.0	5
36	Nitroxyl radical self assembled monolayers: Ion pairing investigation in organic and aqueous media. Electrochemistry Communications, 2010, 12, 79-82.	2.3	15

#	Article	IF	CITATIONS
37	Electroactive self-assembled monolayers: Laviron's interaction model extended to non-random distribution of redox centers. Electrochemistry Communications, 2010, 12, 1462-1466.	2.3	40
38	Phase segregation on electroactive self-assembled monolayers: a numerical approach for describing lateral interactions between redox centers. Physical Chemistry Chemical Physics, 2010, 12, 12584.	1.3	19
39	Nitroxyl Radical Selfâ€Assembled Monolayers on Gold: Versatile Electroactive Centers in Aqueous and Organic Media. ChemPhysChem, 2009, 10, 2401-2404.	1.0	27
40	Nitroxyl radical self-assembled monolayers on gold: Experimental data vs. Laviron's interaction model. Electrochemistry Communications, 2009, 11, 1776-1780.	2.3	28
41	Quaterthiophenes with Terminal Indeno[1,2- <i>b</i>) Ithiophene Units as <i>p</i> -Type Organic Semiconductors. Journal of Organic Chemistry, 2009, 74, 1054-1064.	1.7	27
42	Self-assembled monolayer-assisted mass spectrometry. Journal of Materials Chemistry, 2009, 19, 8032.	6.7	8
43	Effects of aromatic spacers on the properties of organic field effect transistors based on π-extended tetrathiafulvalene derivatives. Journal of Materials Chemistry, 2009, 19, 3648.	6.7	24
44	Evaluation of a new matrixâ€free laser desorption/ionization method through statistic studies: comparison of the DIAMS (desorption/ionization on selfâ€assembled monolayer surface) method with the MALDI and TGFAâ€LDI techniques. Journal of Mass Spectrometry, 2008, 43, 1618-1626.	0.7	15
45	Star-shaped conjugated systems derived from dithiafulvenyl-derivatized triphenylamines as active materials for organic solar cells. Solar Energy Materials and Solar Cells, 2008, 92, 1170-1174.	3.0	46
46	Molecular Engineering of the Internal Charge Transfer in Thiopheneâ^Triphenylamine Hybrid Ï€-Conjugated Systems. Journal of Organic Chemistry, 2007, 72, 8332-8336.	1.7	150
47	Triphenylamineâ^'Oligothiophene Conjugated Systems as Organic Semiconductors for Opto-Electronics. Chemistry of Materials, 2006, 18, 2584-2590.	3.2	176
48	Triphenylamineâ^Thienylenevinylene Hybrid Systems with Internal Charge Transfer as Donor Materials for Heterojunction Solar Cells. Journal of the American Chemical Society, 2006, 128, 3459-3466.	6.6	757
49	A star-shaped triphenylamine π-conjugated system with internal charge-transfer as donor material for hetero-junction solar cells. Chemical Communications, 2006, , 1416.	2.2	61
50	Desorption/ionization on self-assembled monolayer surfaces (DIAMS). Journal of Mass Spectrometry, 2006, 41, 830-833.	0.7	25
51	Light-Emitting Organic Solar Cells Based on a 3D Conjugated System with Internal Charge Transfer. Advanced Materials, 2006, 18, 3033-3037.	11.1	180