Dieter W Heermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A chromosomal loop anchor mediates bacterial genome organization. Nature Genetics, 2022, 54, 194-201.	9.4	17
2	Superstructure Detection in Nucleosome Distribution Shows Common Pattern within a Chromosome and within the Genome. Life, 2022, 12, 541.	1.1	3
3	Prediction and comparative analysis of CTCF binding sites based on a first principle approach. Physical Biology, 2022, 19, 036005.	0.8	2
4	Inter-nucleosomal potentials from nucleosomal positioning data. European Physical Journal E, 2022, 45, 33.	0.7	1
5	Elucidation of the Clustered Nano-Architecture of Radiation-Induced DNA Damage Sites and Surrounding Chromatin in Cancer Cells: A Single Molecule Localization Microscopy Approach. International Journal of Molecular Sciences, 2021, 22, 3636.	1.8	15
6	Space and Time in the Universe of the Cell Nucleus after Ionizing Radiation Attacks: A Comparison of Cancer and Non-Cancer Cell Response. , 2021, 3, .		1
7	Topological Analysis of γH2AX and MRE11 Clusters Detected by Localization Microscopy during X-ray-Induced DNA Double-Strand Break Repair. Cancers, 2021, 13, 5561.	1.7	10
8	Telomerase subunit Est2 marks internal sites that are prone to accumulate DNA damage. BMC Biology, 2021, 19, 247.	1.7	4
9	Single Molecule Localization Microscopy Analyses of DNA-Repair Foci and Clusters Detected Along Particle Damage Tracks. Frontiers in Physics, 2020, 8, .	1.0	11
10	The Effect of Bending Rigidity on Polymers. Macromolecular Theory and Simulations, 2019, 28, 1800071.	0.6	2
11	Using Persistent Homology as a New Approach for Super-Resolution Localization Microscopy Data Analysis and Classification of Î ³ H2AX Foci/Clusters. International Journal of Molecular Sciences, 2018, 19, 2263.	1.8	31
12	Processing and Analysis of Hi-C Data on Bacteria. Methods in Molecular Biology, 2018, 1837, 19-31.	0.4	0
13	Deciphering 3D Organization of Chromosomes Using Hi-C Data. Methods in Molecular Biology, 2018, 1837, 389-401.	0.4	2
14	Robust detection and segmentation of cell nuclei in biomedical images based on a computational topology framework. Medical Image Analysis, 2017, 38, 90-103.	7.0	28
15	A Three-Pronged Attack To Investigate the Electronic Structure of a Family of Ferromagnetic Fe ₄ Ln ₂ Cyclic Coordination Clusters: A Combined Magnetic Susceptibility, High-Field/High-Frequency Electron Paramagnetic Resonance, and ⁵⁷ Fe Mössbauer Study. Inorganic Chemistry, 2017, 56, 4796-4806.	1.9	41
16	The Electronic Behavior of Zinc-Finger Protein Binding Sites in the Context of the DNA Extended Ladder Model. Frontiers in Physics, 2016, 4, .	1.0	3
17	A multiscale approach to simulating the conformational properties of unbound multiâ€ <scp>C</scp> ₂ <scp>H</scp> ₂ zinc finger proteins. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1604-1615.	1.5	3
18	Radiation Induced Chromatin Conformation Changes Analysed by Fluorescent Localization Microscopy, Statistical Physics, and Graph Theory. PLoS ONE, 2015, 10, e0128555.	1.1	42

DIETER W HEERMANN

#	Article	IF	CITATIONS
19	The interaction of DNA with multi-Cys2His2 zinc finger proteins. Journal of Physics Condensed Matter, 2015, 27, 064107.	0.7	9
20	A generalized Potts model for confocal microscopy images. International Journal of Modern Physics B, 2015, 29, 1550048.	1.0	0
21	Phase transition and winding properties of a flexible polymer adsorbed to a rigid perioidic copolymer. Physical Review E, 2015, 91, 032601.	0.8	0
22	The role of loops on the order of eukaryotes and prokaryotes. FEBS Letters, 2015, 589, 2958-2965.	1.3	31
23	Statistical analysis of protein ensembles. Frontiers in Physics, 2014, 2, .	1.0	1
24	Depletion of the Chromatin Looping Proteins CTCF and Cohesin Causes Chromatin Compaction: Insight into Chromatin Folding by Polymer Modelling. PLoS Computational Biology, 2014, 10, e1003877.	1.5	57
25	How Chromatin Looping and Nuclear Envelope Attachment Affect Genome Organization in Eukaryotic Cell Nuclei. International Review of Cell and Molecular Biology, 2014, 307, 351-381.	1.6	24
26	Persistence intervals of fractals. Physica A: Statistical Mechanics and Its Applications, 2014, 405, 252-259.	1.2	2
27	A topological similarity measure for proteins. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1180-1190.	1.4	21
28	Zinc Finger Proteins and the 3D Organization of Chromosomes. Advances in Protein Chemistry and Structural Biology, 2013, 90, 67-117.	1.0	9
29	Transcriptional regulatory network shapes the genome structure of <i>Saccharomyces cerevisiae</i> . Nucleus, 2013, 4, 216-228.	0.6	9
30	A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation. Nucleic Acids Research, 2012, 40, 972-980.	6.5	84
31	A model for the 3D chromatin architecture of pro and eukaryotes. Methods, 2012, 58, 307-314.	1.9	16
32	Expression-Dependent Folding of Interphase Chromatin. PLoS ONE, 2012, 7, e37525.	1.1	26
33	Mitotic chromosome structure. Experimental Cell Research, 2012, 318, 1381-1385.	1.2	2
34	Loops Determine the Mechanical Properties of Mitotic Chromosomes. PLoS ONE, 2011, 6, e29225.	1.1	26
35	Confinement driven spatial organization of semiflexible ring polymers: Implications for biopolymer packaging. Soft Matter, 2011, 7, 6906.	1.2	28
36	Repulsive Forces Between Looping Chromosomes Induce Entropy-Driven Segregation. PLoS ONE, 2011, 6, e14428.	1.1	35

DIETER W HEERMANN

#	Article	IF	CITATIONS
37	Physical nuclear organization: loops and entropy. Current Opinion in Cell Biology, 2011, 23, 332-337.	2.6	35
38	Chromatin folding – from biology to polymer models and back. Journal of Cell Science, 2011, 124, 839-845.	1.2	94
39	Conformational and Dynamical Properties of the Isolated, Threeâ€Dimensional Single―and Doubleâ€Tethered Polymer Chain on an Infinite Surface. Macromolecular Theory and Simulations, 2010, 19, 440-448.	0.6	6
40	Diffusion-Driven Looping Provides a Consistent Framework for Chromatin Organization. PLoS ONE, 2010, 5, e12218.	1.1	158
41	Topological interactions between ring polymers: Implications for chromatin loops. Journal of Chemical Physics, 2010, 132, 044904.	1.2	63
42	Localization Microscopy Reveals Expression-Dependent Parameters ofÂChromatin Nanostructure. Biophysical Journal, 2010, 99, 1358-1367.	0.2	73
43	Histone Depletion Facilitates Chromatin Loops on the Kilobasepair Scale. Biophysical Journal, 2010, 99, 2995-3001.	0.2	39
44	On the Influence of Topological Catenation and Bonding Constraints on Ring Polymers. Macromolecules, 2010, 43, 2564-2573.	2.2	30
45	Monte Carlo Simulation in Statistical Physics. Graduate Texts in Physics, 2010, , .	0.1	315
46	Conformational properties of compact polymers. Journal of Chemical Physics, 2009, 130, 174901.	1.2	15
47	Spatially confined folding of chromatin in the interphase nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3812-3817.	3.3	233
48	Depletion Effects Massively Change Chromatin Properties and Influence Genome Folding. Biophysical Journal, 2009, 97, 2146-2153.	0.2	34
49	Random loop model for long polymers. Physical Review E, 2007, 76, 051805.	0.8	92
50	Superdiffusion in a Model for Diffusion in a Molecularly Crowded Environment. Journal of Biological Physics, 2007, 33, 305-312.	0.7	21
51	Monte Carlo Simulation in Statistical Physics. Springer Series in Solid-state Sciences, 2002, , .	0.3	240
52	Diffusion of gas molecules in the polystyrene matrix. Macromolecular Theory and Simulations, 2000, 9, 687-697.	0.6	3
53	Monte Carlo Simulation in Statistical Physics. Springer Series in Solid-state Sciences, 1988, ,	0.3	546