

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3903220/publications.pdf

Version: 2024-02-01

ا ا منا

#	Article	IF	CITATIONS
1	BAK1, an Arabidopsis LRR Receptor-like Protein Kinase, Interacts with BRI1 and Modulates Brassinosteroid Signaling. Cell, 2002, 110, 213-222.	28.9	1,231
2	The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proceedings of the United States of America, 2007, 104, 12217-12222.	7.1	998
3	Sequential Transphosphorylation of the BRI1/BAK1 Receptor Kinase Complex Impacts Early Events in Brassinosteroid Signaling. Developmental Cell, 2008, 15, 220-235.	7.0	485
4	BAK1 and BKK1 Regulate Brassinosteroid-Dependent Growth and Brassinosteroid-Independent Cell-Death Pathways. Current Biology, 2007, 17, 1109-1115.	3.9	378
5	Identification and Functional Analysis of in Vivo Phosphorylation Sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 Receptor Kinase. Plant Cell, 2005, 17, 1685-1703.	6.6	364
6	Genetic Evidence for an Indispensable Role of Somatic Embryogenesis Receptor Kinases in Brassinosteroid Signaling. PLoS Genetics, 2012, 8, e1002452.	3.5	243
7	Brassinosteroids Regulate Root Growth, Development, and Symbiosis. Molecular Plant, 2016, 9, 86-100.	8.3	218
8	Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics, 2010, 11, 19.	2.8	196
9	TCP1 Modulates Brassinosteroid Biosynthesis by Regulating the Expression of the Key Biosynthetic Gene <i>DWARF4</i> in <i>Arabidopsis thaliana</i> ÂÂ. Plant Cell, 2010, 22, 1161-1173.	6.6	178
10	Engineering <i>OsBAK1</i> gene as a molecular tool to improve rice architecture for high yield. Plant Biotechnology Journal, 2009, 7, 791-806.	8.3	176
11	<scp><i>PAG1</i></scp> , a cotton brassinosteroid catabolism gene, modulates fiber elongation. New Phytologist, 2014, 203, 437-448.	7.3	170
12	Regulation of Brassinosteroid Biosynthesis and Inactivation ^F . Journal of Integrative Plant Biology, 2012, 54, 746-759.	8.5	153
13	RGF1 INSENSITIVE 1 to 5, a group of LRR receptor-like kinases, are essential for the perception of root meristem growth factor 1 in Arabidopsis thaliana. Cell Research, 2016, 26, 686-698.	12.0	144
14	A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis. Nature Plants, 2018, 4, 205-211.	9.3	135
15	BRL1, a leucineâ€rich repeat receptorâ€like protein kinase, is functionally redundant with BRI1 in regulating Arabidopsis brassinosteroid signaling. Plant Journal, 2004, 40, 399-409.	5.7	126
16	Genome-Wide Expression Pattern Analyses of the Arabidopsis Leucine-Rich Repeat Receptor-Like Kinases. Molecular Plant, 2016, 9, 289-300.	8.3	125
17	Multi-tasking of somatic embryogenesis receptor-like protein kinases. Current Opinion in Plant Biology, 2010, 13, 509-514.	7.1	116
18	BES1 is activated by EMS1-TPD1-SERK1/2-mediated signaling to control tapetum development in Arabidopsis thaliana. Nature Communications, 2019, 10, 4164.	12.8	97

#	Article	IF	CITATIONS
19	Multiple transcriptional factors control stomata development in rice. New Phytologist, 2019, 223, 220-232.	7.3	97
20	BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids inArabidopsis thaliana. Plant Journal, 2007, 51, 220-233.	5.7	87
21	TCP Transcription Factors Associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to Regulate Thermomorphogenesis in Arabidopsis thaliana. IScience, 2019, 15, 600-610.	4.1	81
22	CIK Receptor Kinases Determine Cell Fate Specification during Early Anther Development in Arabidopsis. Plant Cell, 2018, 30, 2383-2401.	6.6	79
23	Arabidopsis DELLA Protein Degradation Is Controlled by a Type-One Protein Phosphatase, TOPP4. PLoS Genetics, 2014, 10, e1004464.	3.5	67
24	Regulation of the stability of RGF1 receptor by the ubiquitin-specific proteases UBP12/UBP13 is critical for root meristem maintenance. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1123-1128.	7.1	67
25	TCP Transcription Factors Regulate Shade Avoidance via Directly Mediating the Expression of Both <i>PHYTOCHROME INTERACTING FACTOR</i> s and Auxin Biosynthetic Genes. Plant Physiology, 2018, 176, 1850-1861.	4.8	65
26	Somatic Embryogenesis Receptor Kinases Control Root Development Mainly via Brassinosteroidâ€Independent Actions in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2012, 54, 388-399.	8.5	63
27	Loss of the common immune coreceptor BAK1 leads to NLR-dependent cell death. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27044-27053.	7.1	63
28	Asymmetric distribution of cytokinins determines root hydrotropism in Arabidopsis thaliana. Cell Research, 2019, 29, 984-993.	12.0	61
29	Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5. Plant Physiology, 2017, 174, 1260-1273.	4.8	55
30	BAK1 and BKK1 in Arabidopsis thaliana confer reduced susceptibility to turnip crinkle virus. European Journal of Plant Pathology, 2010, 127, 149-156.	1.7	50
31	TYPE-ONE PROTEIN PHOSPHATASE4 Regulates Pavement Cell Interdigitation by Modulating PIN-FORMED1 Polarity and Trafficking in Arabidopsis. Plant Physiology, 2015, 167, 1058-1075.	4.8	48
32	RGF1-RGI1, a Peptide-Receptor Complex, Regulates Arabidopsis Root Meristem Development via a MAPK Signaling Cascade. Molecular Plant, 2020, 13, 1594-1607.	8.3	47
33	Paired Receptor and Coreceptor Kinases Perceive Extracellular Signals to Control Plant Development. Plant Physiology, 2020, 182, 1667-1681.	4.8	47
34	TCP1 Modulates DWF4 Expression via Directly Interacting with the GGNCCC Motifs in the Promoter Region of DWF4 in Arabidopsis thaliana. Journal of Genetics and Genomics, 2015, 42, 383-392.	3.9	46
35	Nucleocytoplasmic trafficking is essential for <scp>BAK</scp> 1―and <scp>BKK</scp> 1â€mediated cellâ€death control. Plant Journal, 2016, 85, 520-531.	5.7	45
36	TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Plant Physiology, 2016, 170, 1381-1397.	4.8	44

#	Article	IF	CITATIONS
37	Receptor‣ike Kinases: Key Regulators of Plant Development and Defense. Journal of Integrative Plant Biology, 2013, 55, 1184-1187.	8.5	42
38	<scp>BAK</scp> 1 Directly Regulates Brassinosteroid Perception and <scp>BRI</scp> 1 Activation. Journal of Integrative Plant Biology, 2013, 55, 1264-1270.	8.5	41
39	Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control. Frontiers in Plant Science, 2015, 6, 852.	3.6	40
40	Regulation of Brassinosteroid Homeostasis in Higher Plants. Frontiers in Plant Science, 2020, 11, 583622.	3.6	40
41	Kinase SnRK1.1 regulates nitrate channel SLAH3 engaged in nitrate-dependent alleviation of ammonium toxicity. Plant Physiology, 2021, 186, 731-749.	4.8	37
42	TWISTED DWARF 1 Associates with BRASSINOSTEROID-INSENSITIVE 1 to Regulate Early Events of the Brassinosteroid Signaling Pathway. Molecular Plant, 2016, 9, 582-592.	8.3	36
43	Molecular Mechanisms of Brassinosteroid-Mediated Responses to Changing Environments in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 2737.	4.1	36
44	Sterols are required for cellâ€fate commitment and maintenance of the stomatal lineage in <scp>A</scp> rabidopsis. Plant Journal, 2013, 74, 1029-1044.	5.7	35
45	Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Scientific Reports, 2017, 7, 9327.	3.3	34
46	SAUR15 Promotes Lateral and Adventitious Root Development via Activating H ⁺ -ATPases and Auxin Biosynthesis. Plant Physiology, 2020, 184, 837-851.	4.8	33
47	Both Light-Induced SA Accumulation and ETI Mediators Contribute to the Cell Death Regulated by BAK1 and BKK1. Frontiers in Plant Science, 2017, 8, 622.	3.6	31
48	Receptorâ€like protein kinases: Key regulators controlling root hair development in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2018, 60, 841-850.	8.5	29
49	Two receptorâ€like protein kinases, MUSTACHES and MUSTACHESâ€LIKE, regulate lateral root development in <i>Arabidopsis thaliana</i> . New Phytologist, 2020, 227, 1157-1173.	7.3	27
50	Perception of the pathogenâ€induced peptide RGF7 by the receptorâ€like kinases RGI4 and RGI5 triggers innate immunity in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 230, 1110-1125.	7.3	27
51	A CLE–BAM–CIK signalling module controls root protophloem differentiation in Arabidopsis. New Phytologist, 2022, 233, 282-296.	7.3	27
52	SERK Receptor-like Kinases Control Division Patterns of Vascular Precursors and Ground Tissue Stem Cells during Embryo Development in Arabidopsis. Molecular Plant, 2019, 12, 984-1002.	8.3	26
53	Scanning for New BRI1 Mutations via TILLING Analysis. Plant Physiology, 2017, 174, 1881-1896.	4.8	25
54	Receptor-like protein kinases, BAK1 and BKK1, regulate a light-dependent cell-death control pathway. Plant Signaling and Behavior, 2008, 3, 813-815.	2.4	24

#	Article	IF	CITATIONS
55	AtPiezo Plays an Important Role in Root Cap Mechanotransduction. International Journal of Molecular Sciences, 2021, 22, 467.	4.1	24
56	Nitrate transporter NRT1.1 and anion channel SLAH3 form a functional unit to regulate nitrateâ€dependent alleviation of ammonium toxicity. Journal of Integrative Plant Biology, 2022, 64, 942-957.	8.5	22
57	NRPB3, the third largest subunit of RNA polymerase II, is essential for stomatal patterning and differentiation in <i>Arabidopsis</i> . Development (Cambridge), 2016, 143, 1600-11.	2.5	20
58	TCP1 positively regulates the expression of <i>DWF4</i> in <i>Arabidopsis thaliana</i> . Plant Signaling and Behavior, 2011, 6, 1117-1118.	2.4	19
59	Conserved and differentiated functions of CIK receptor kinases in modulating stem cell signaling in Arabidopsis. Molecular Plant, 2021, 14, 1119-1134.	8.3	18
60	Overexpression of a serine carboxypeptidase increases carpel number and seed production in <i><scp>A</scp>rabidopsis thaliana</i> . Food and Energy Security, 2012, 1, 61-69.	4.3	17
61	Receptor-like Kinases in Root Development: Current Progress and Future Directions. Molecular Plant, 2021, 14, 166-185.	8.3	17
62	The photomorphogenic repressors BBX28 and BBX29 integrate light and brassinosteroid signaling to inhibit seedling development in Arabidopsis. Plant Cell, 2022, 34, 2266-2285.	6.6	17
63	Receptor-like cytoplasmic kinases PBL34/35/36 are required for CLE peptide-mediated signaling to maintain shoot apical meristem and root apical meristem homeostasis in Arabidopsis. Plant Cell, 2022, 34, 1289-1307.	6.6	15
64	SERKs. Current Biology, 2020, 30, R293-R294.	3.9	14
65	SAUR15 interaction with BRI1 activates plasma membrane H+-ATPase to promote organ development of Arabidopsis. Plant Physiology, 2022, 189, 2454-2466.	4.8	14
66	Activation Tagging. Methods in Molecular Biology, 2011, 876, 117-133.	0.9	11
67	Integration of Light and Brassinosteroid Signaling during Seedling Establishment. International Journal of Molecular Sciences, 2021, 22, 12971.	4.1	11
68	Essential roles of SERKs in the ROOT MERISTEM GROWTH FACTOR-mediated signaling pathway. Plant Physiology, 2022, 189, 165-177.	4.8	11
69	SERKs regulate embryonic cuticle integrity through the TWS1â€GSO1/2 signaling pathway in Arabidopsis. New Phytologist, 2022, 233, 313-328.	7.3	10
70	Brassinosteroids. , 2017, , 291-326.		8
71	Cis-Regulatory Elements Determine Germline Specificity and Expression Level of an Isopentenyltransferase Gene in Sperm Cells of Arabidopsis. Plant Physiology, 2016, 170, 1524-1534.	4.8	7
72	RNA polymerase II associated proteins regulate stomatal development through direct interaction with stomatal transcription factors in <i>Arabidopsis thaliana</i> . New Phytologist, 2021, 230, 171-189.	7.3	7

#	Article	IF	CITATIONS
73	Protein farnesylation negatively regulates brassinosteroid signaling via reducing BES1 stability in <i>Arabidopsis thaliana</i> . Journal of Integrative Plant Biology, 2021, 63, 1353-1366.	8.5	7
74	Accelerated rates of protein evolution in barley grain and pistil biased genes might be legacy of domestication. Plant Molecular Biology, 2015, 89, 253-261.	3.9	6
75	Thermal-Enhanced bri1-301 Instability Reveals a Plasma Membrane Protein Quality Control System in Plants. Frontiers in Plant Science, 2018, 9, 1620.	3.6	6
76	<i>Arabidopsis</i> ROOT ELONGATION RECEPTOR KINASES negatively regulate root growth putatively via altering cell wall remodeling gene expression. Journal of Integrative Plant Biology, 2022, 64, 1502-1513.	8.5	5
77	Functional Analysis and Phosphorylation Site Mapping of Leucine-Rich Repeat Receptor-Like Kinases. , 0, , 469-483.		4
78	Genome-wide expression and network analyses of mutants in key brassinosteroid signaling genes. BMC Genomics, 2021, 22, 465.	2.8	4
79	Activation of the WUS Gene Induces Ectopic Initiation of Floral Meristems on Mature Stem Surface in Arabidopsis thaliana. Plant Molecular Biology, 2005, 58, 915-915.	3.9	3
80	Three divergent approaches identified the same RGF1 receptors in Arabidopsis thaliana. Science China Life Sciences, 2017, 60, 1040-1043.	4.9	2
81	Cell signaling leads the way. Journal of Integrative Plant Biology, 2018, 60, 743-744.	8.5	2
82	Rapid responses: receptorâ€like kinases directly regulate the functions of membrane transport proteins in plants. Journal of Integrative Plant Biology, 2022, , .	8.5	2
83	Cell-Death Control by Receptor Kinases in Arabidopsis thaliana. Signaling and Communication in Plants, 2012, , 79-91.	0.7	1
84	Evolution of RGF/GLV/CLEL Peptide Hormones and Their Roles in Land Plant Growth and Regulation. International Journal of Molecular Sciences, 2021, 22, 13372.	4.1	1
85	Methods to Quantify Cell Division and Hormone Gradients During Root Tropisms. Methods in Molecular Biology, 2022, 2368, 71-80.	0.9	Ο