List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3902978/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrative study of the microbiome gut-brain-axis and hippocampal inflammation in psychosis: Persistent effects from mode of birth. Schizophrenia Research, 2022, 247, 101-115.	1.1	7
2	Patient-reported exposures and outcomes link the gut-brain axis and inflammatory pathways to specific symptoms of severe mental illness. Psychiatry Research, 2022, 312, 114526.	1.7	7
3	Preliminary Findings Associate Hippocampal ¹ H-MR Spectroscopic Metabolite Concentrations with Psychotic and Manic Symptoms in Patients with Schizophrenia. American Journal of Neuroradiology, 2021, 42, 88-93.	1.2	7
4	Clobal brain volume and N-acetyl-aspartate decline over seven decades of normal aging. Neurobiology of Aging, 2021, 98, 42-51.	1.5	14
5	Fast, regional threeâ€dimensional hybrid (1Dâ€Hadamard 2Dâ€rosette) proton MR spectroscopic imaging in the human temporal lobes. NMR in Biomedicine, 2021, 34, e4507.	1.6	5
6	MR spectroscopic imaging at 3 T and outcomes in surgical epilepsy. NMR in Biomedicine, 2021, 34, e4492.	1.6	1
7	Differentiation of Jugular Foramen Paragangliomas versus Schwannomas Using Golden-Angle Radial Sparse Parallel Dynamic Contrast-Enhanced MRI. American Journal of Neuroradiology, 2021, 42, 1847-1852.	1.2	3
8	Putamen Inflammation and its Association With Working Memory Impairments in Schizophrenia Spectrum Disorders. Biological Psychiatry, 2020, 87, S213-S214.	0.7	0
9	Hippocampal metabolite concentrations in schizophrenia vary in association with rare gene variants in the TRIO gene. Schizophrenia Research, 2020, 224, 167-169.	1.1	2
10	Quantitative multivoxel proton MR spectroscopy for the identification of white matter abnormalities in mild traumatic brain injury: Comparison between regional and global analysis. Journal of Magnetic Resonance Imaging, 2019, 50, 1424-1432.	1.9	11
11	Whole brain neuronal abnormalities in focal quantified with proton MR spectroscopy. Epilepsy Research, 2018, 139, 85-91.	0.8	12
12	Diagnosis of Normal-Pressure Hydrocephalus: Use of Traditional Measures in the Era of Volumetric MR Imaging. Radiology, 2017, 285, 197-205.	3.6	85
13	Role of High-Resolution Dynamic Contrast-Enhanced MRI with Golden-Angle Radial Sparse Parallel Reconstruction to Identify the Normal Pituitary Gland in Patients with Macroadenomas. American Journal of Neuroradiology, 2017, 38, 1117-1121.	1.2	16
14	Proton MR spectroscopy of lesion evolution in multiple sclerosis: Steadyâ€state metabolism and its relationship to conventional imaging. Human Brain Mapping, 2017, 38, 4047-4063.	1.9	18
15	Neuropsychological Testing, MR Spectroscopy and Patient Symptom Reports Reveal Two Distinct Stories in mTBI. Archives of Physical Medicine and Rehabilitation, 2017, 98, e87.	0.5	0
16	Global brain metabolic quantification with wholeâ€head proton MRS at 3ÂT. NMR in Biomedicine, 2017, 30, e3754.	1.6	4
17	Quantifying global-brain metabolite level changes with whole-head proton MR spectroscopy at 3 T. Magnetic Resonance Imaging, 2017, 35, 15-19.	1.0	4
18	Metabolic Abnormalities in the Hippocampus of Patients with Schizophrenia: A 3D Multivoxel MR Spectroscopic Imaging Study at 3T. American Journal of Neuroradiology, 2016, 37, 2273-2279.	1.2	12

#	Article	IF	CITATIONS
19	MR Imaging Applications in Mild Traumatic Brain Injury: An Imaging Update. Radiology, 2016, 279, 693-707.	3.6	51
20	Prefrontal neuronal integrity predicts symptoms and cognition in schizophrenia and is sensitive to genetic heterogeneity. Schizophrenia Research, 2016, 172, 94-100.	1.1	12
21	Hypo-metabolism of the rostral anterior cingulate cortex associated with working memory impairment in 18 cases of schizophrenia. Brain Imaging and Behavior, 2016, 10, 115-123.	1.1	11
22	Spectroscopic localization by simultaneous acquisition of the doubleâ€spin and stimulated echoes. Magnetic Resonance in Medicine, 2015, 73, 31-43.	1.9	10
23	N -acetyl-aspartate levels correlate with intra-axonal compartment parameters from diffusion MRI. Neurolmage, 2015, 118, 334-343.	2.1	40
24	Three-dimensional hadamard-encoded proton spectroscopic imaging in the human brain using time-cascaded pulses at 3 tesla. Magnetic Resonance in Medicine, 2014, 72, 923-933.	1.9	6
25	Myoinositol and glutamate complex neurometabolite abnormality after mild traumatic brain injury. Neurology, 2014, 82, 521-528.	1.5	61
26	Automated wholeâ€brain <i>N</i> â€acetylaspartate proton MRS quantification. NMR in Biomedicine, 2014, 27, 1275-1284.	1.6	8
27	Global N-Acetylaspartate in Normal Subjects, Mild Cognitive Impairment and Alzheimer's Disease Patients. Journal of Alzheimer's Disease, 2014, 43, 939-947.	1.2	27
28	In vivo free induction decay based 3D multivoxel longitudinal hadamard spectroscopic imaging in the human brain at 3 T. Magnetic Resonance in Medicine, 2013, 69, 903-911.	1.9	7
29	Brain MR spectroscopic abnormalities in "MRI-negative―tuberous sclerosis complex patients. Epilepsy and Behavior, 2013, 27, 319-325.	0.9	6
30	Global gray and white matter metabolic changes after simian immunodeficiency virus infection in CD8â€depleted rhesus macaques: proton MRS imaging at 3 T. NMR in Biomedicine, 2013, 26, 480-488.	1.6	5
31	Global N-acetylaspartate concentration in benign and non-benign multiple sclerosis patients of long disease duration. European Journal of Radiology, 2013, 82, e848-e852.	1.2	12
32	Proton MR Spectroscopy Correlates Diffuse Axonal Abnormalities with Post-Concussive Symptoms in Mild Traumatic Brain Injury. Journal of Neurotrauma, 2013, 30, 1200-1204.	1.7	59
33	Nonâ€spinâ€echo 3D transverse hadamard encoded proton spectroscopic imaging in the human brain. Magnetic Resonance in Medicine, 2013, 70, 7-15.	1.9	6
34	Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. Journal of Neurology, 2013, 260, 242-252.	1.8	70
35	Serial proton MR spectroscopy of gray and white matter in relapsing-remitting MS. Neurology, 2013, 80, 39-46.	1.5	74
36	Localization errors in MR spectroscopic imaging due to the drift of the main magnetic field and their correction. Magnetic Resonance in Medicine, 2013, 70, 895-904.	1.9	16

#	Article	IF	CITATIONS
37	Structure-specific glial response in a macaque model of neuroAIDS. Aids, 2013, 27, 2519-2528.	1.0	5
38	The whole-brain N-acetylaspartate correlates with education in normal adults. Psychiatry Research - Neuroimaging, 2012, 204, 49-54.	0.9	6
39	Whole brain N-acetylaspartate concentration is conserved throughout normal aging. Neurobiology of Aging, 2012, 33, 2440-2447.	1.5	25
40	The role of gray and white matter segmentation in quantitative proton MR spectroscopic imaging. NMR in Biomedicine, 2012, 25, 1392-1400.	1.6	63
41	Longitudinal <i>inter</i> ―and <i>intra</i> â€individual human brain metabolic quantification over 3 years with proton MR spectroscopy at 3 T. Magnetic Resonance in Medicine, 2012, 67, 27-33.	1.9	29
42	Crossâ€sectional and longitudinal reproducibility of rhesus macaque brain metabolites: A proton MR spectroscopy study at 3 T. Magnetic Resonance in Medicine, 2011, 65, 1522-1531.	1.9	4
43	Multivoxel Proton MR Spectroscopy Used to Distinguish Anterior Cingulate Metabolic Abnormalities in Patients with Schizophrenia. Radiology, 2011, 261, 542-550.	3.6	7
44	Brain metabolitesB1-corrected protonT1mapping in the rhesus macaque at 3 T. Magnetic Resonance in Medicine, 2010, 63, 865-871.	1.9	8
45	Brain Metabolite Proton T2 Mapping at 3.0 T in Relapsing-Remitting Multiple Sclerosis. Radiology, 2010, 254, 858-866.	3.6	19
46	The kynurenine pathway in adolescent depression: Preliminary findings from a proton MR spectroscopy study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2010, 34, 37-44.	2.5	51
47	Metabolite proton <i>T</i> ₂ mapping in the healthy rhesus macaque brain at 3 T. Magnetic Resonance in Medicine, 2009, 62, 1292-1299.	1.9	5
48	On the voxel size and magnetic field strength dependence of spectral resolution in magnetic resonance spectroscopy. Magnetic Resonance Imaging, 2009, 27, 222-232.	1.0	12
49	Retrospective correction for T1-weighting bias in T2 values obtained with various spectroscopic spin-echo acquisition schemes. Magnetic Resonance Imaging, 2009, 27, 1410-1419.	1.0	4
50	The optimal MR acquisition strategy for exponential decay constants estimation. Magnetic Resonance Imaging, 2008, 26, 433-435.	1.0	25
51	Proton MR spectroscopic imaging of rhesus macaque brain in vivo at 7T. Magnetic Resonance in Medicine, 2008, 59, 692-699.	1.9	9
52	Regional metabolite <i>T</i> ₂ in the healthy rhesus macaque brain at 7T. Magnetic Resonance in Medicine, 2008, 59, 1165-1169.	1.9	9
53	Voxelâ€shift and interpolation for hadamardâ€encoded MR images. Magnetic Resonance in Medicine, 2008, 60, 524-535.	1.9	6
54	Age dependence of regional proton metabolites <i>T</i> _{<i>2</i>} relaxation times in the human brain at 3 T. Magnetic Resonance in Medicine, 2008, 60, 790-795.	1.9	74

#	Article	IF	CITATIONS
55	TriTone: a radiofrequency field (B1)-insensitive T1 estimator for MRI at high magnetic fields. Magnetic Resonance Imaging, 2008, 26, 781-789.	1.0	16
56	Memantine decreases hippocampal glutamate levels: A magnetic resonance spectroscopy study. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2008, 32, 1005-1012.	2.5	25
57	Global average gray and white matter N-acetylaspartate concentration in the human brain. NeuroImage, 2008, 41, 270-276.	2.1	35
58	Anteroposterior Hippocampal Metabolic Heterogeneity: Three-dimensional Multivoxel Proton ¹ H MR Spectroscopic Imaging—Initial Findings. Radiology, 2008, 249, 242-250.	3.6	20
59	Lateralized Caudate Metabolic Abnormalities in Adolescent Major Depressive Disorder: A Proton MR Spectroscopy Study. American Journal of Psychiatry, 2007, 164, 1881-1889.	4.0	95
60	Characterizing â€~mild' in traumatic brain injury with proton MR spectroscopy in the thalamus: Initial findings. Brain Injury, 2007, 21, 1147-1154.	0.6	54
61	Optimizing the precision-per-unit-time of quantitative MR metrics: Examples forT1,T2, and DTI. Magnetic Resonance in Medicine, 2007, 57, 380-387.	1.9	32
62	Human brain-structure resolvedT2 relaxation times of proton metabolites at 3 tesla. Magnetic Resonance in Medicine, 2007, 57, 983-989.	1.9	57
63	Chemical-shift artifact reduction in hadamard-encoded MR spectroscopic imaging at high (3T and 7T) magnetic fields. Magnetic Resonance in Medicine, 2007, 58, 167-173.	1.9	36
64	Reducing voxel bleed in hadamard-encoded MRI and MRS. Magnetic Resonance in Medicine, 2006, 55, 1460-1465.	1.9	22
65	Robust fully automated shimming of the human brain for high-field1H spectroscopic imaging. Magnetic Resonance in Medicine, 2006, 56, 26-33.	1.9	63
66	Optimizing the efficiency of high-field multivoxel spectroscopic imaging by multiplexing in space and time. Magnetic Resonance in Medicine, 2006, 56, 34-40.	1.9	45
67	Relapsing-Remitting Multiple Sclerosis: Metabolic Abnormality in Nonenhancing Lesions and Normal-appearing White Matter at MR Imaging: Initial Experience. Radiology, 2005, 234, 211-217.	3.6	50
68	Assessing global invasion of newly diagnosed glial tumors with whole-brain proton MR spectroscopy. American Journal of Neuroradiology, 2005, 26, 2170-7.	1.2	31
69	Brain compression without global neuronal loss in meningiomas: whole-brain proton MR spectroscopy report of 2 cases. American Journal of Neuroradiology, 2005, 26, 2178-82.	1.2	6
70	Dilated perivascular spaces: hallmarks of mild traumatic brain injury. American Journal of Neuroradiology, 2005, 26, 719-24.	1.2	70
71	MR imaging and proton spectroscopy of neuronal injury in late-onset GM2 gangliosidosis. American Journal of Neuroradiology, 2005, 26, 2037-42.	1.2	30
72	Indirect evidence for early widespread gray matter involvement in relapsing–remitting multiple sclerosis. NeuroImage, 2004, 21, 1825-1829.	2.1	92

#	Article	IF	CITATIONS
73	Diffusely elevated cerebral choline and creatine in relapsing-remitting multiple sclerosis. Magnetic Resonance in Medicine, 2003, 50, 190-195.	1.9	109
74	Metabolite ratios to assumed stable creatine level may confound the quantification of proton brain MR spectroscopy. Magnetic Resonance Imaging, 2003, 21, 923-928.	1.0	162
75	Whole-brain N-acetylaspartate level and cognitive performance in HIV infection. American Journal of Neuroradiology, 2003, 24, 1587-91.	1.2	18
76	Brain metabolite profiles of T1-hypointense lesions in relapsing-remitting multiple sclerosis. American Journal of Neuroradiology, 2003, 24, 68-74.	1.2	25
77	Relapsing-remitting Multiple Sclerosis and Whole-BrainN-Acetylaspartate Measurement: Evidence for Different Clinical Cohorts—Initial Observations. Radiology, 2002, 225, 261-268.	3.6	36
78	Reproducibility of 3D proton spectroscopy in the human brain. Magnetic Resonance in Medicine, 2002, 47, 439-446.	1.9	65
79	SNR versus resolution in 3D1H MRS of the human brain at high magnetic fields. Magnetic Resonance in Medicine, 2001, 46, 1049-1053.	1.9	58
80	Quantifying Radiation Therapy–induced Brain Injury with Whole-Brain Proton MR Spectroscopy: Initial Observations. Radiology, 2001, 221, 327-331.	3.6	35
81	The accuracy of whole brain N-acetylaspartate quantification. Magnetic Resonance Imaging, 2000, 18, 1255-1258.	1.0	26
82	3D multivoxel proton spectroscopy of human brain using a hybrid of 8th-order hadamard encoding with 2D chemical shift imaging. Magnetic Resonance in Medicine, 1998, 39, 34-40.	1.9	46
83	Total brain N-acetylaspartate concentration in normal, age-grouped females: Quantitation with non-echo proton NMR spectroscopy. Magnetic Resonance in Medicine, 1998, 40, 684-689.	1.9	76
84	In vivo phosphorus polarization transfer and decoupling from protons in three-dimensional localized nuclear magnetic resonance spectroscopy of human brain. Magnetic Resonance in Medicine, 1997, 37, 301-306.	1.9	31
85	Simultaneous 3D NMR spectroscopy of proton-decoupled fluorine and phosphorus in human liver during 5-fluorouracil chemotherapy. Magnetic Resonance in Medicine, 1997, 37, 164-169.	1.9	23
86	3D localizedin vivo1H spectroscopy of human brain by using a hybrid of 1D-hadamard with 2D-chemical shift imaging. Magnetic Resonance in Medicine, 1997, 37, 644-650.	1.9	48
87	Heteronuclear Multivoxel Spectroscopy ofIn Vivo Human Brain: Two-Dimensional Proton Interleaved with Three-Dimensional1H-Decoupled Phosphorus Chemical Shift Imaging. , 1996, 9, 105-113.		8
88	Hybrid Three Dimensional (1D-Hadamard, 2D-Chemical Shift Imaging) Phosphorus Localized Spectroscopy of Phantom and Human Brain. Magnetic Resonance in Medicine, 1995, 33, 300-308.	1.9	37