Radek Zboril

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3902513/publications.pdf

Version: 2024-02-01

633 papers

55,228 citations

105 h-index 215 g-index

682 all docs 682 docs citations

times ranked

682

61413 citing authors

#	Article	IF	Citations
1	Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 2012, 112, 6156-6214.	47.7	3,531
2	Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chemical Reviews, 2016, 116, 3722-3811.	47.7	2,051
3	Silver Colloid Nanoparticles:Â Synthesis, Characterization, and Their Antibacterial Activity. Journal of Physical Chemistry B, 2006, 110, 16248-16253.	2.6	2,012
4	Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chemical Reviews, 2016, 116, 5464-5519.	47.7	1,942
5	Broad Family of Carbon Nanoallotropes: Classification, Chemistry, and Applications of Fullerenes, Carbon Dots, Nanotubes, Graphene, Nanodiamonds, and Combined Superstructures. Chemical Reviews, 2015, 115, 4744-4822.	47.7	1,519
6	Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews, 2016, 116, 5338-5431.	47.7	1,333
7	Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chemical Society Reviews, 2015, 44, 7540-7590.	38.1	906
8	Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. Journal of the American Chemical Society, 2010, 132, 7436-7444.	13.7	865
9	Antifungal activity of silver nanoparticles against Candida spp Biomaterials, 2009, 30, 6333-6340.	11.4	821
10	Effect of Surfactants and Polymers on Stability and Antibacterial Activity of Silver Nanoparticles (NPs). Journal of Physical Chemistry C, 2008, 112, 5825-5834.	3.1	812
11	Surface Functionalized Carbogenic Quantum Dots. Small, 2008, 4, 455-458.	10.0	796
12	Carbon dotsâ€"Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today, 2014, 9, 590-603.	11.9	788
13	Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 2018, 13, 65-71.	31.5	671
14	Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. Journal of Physical Chemistry C, 2009, 113, 772-782.	3.1	594
15	Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applicationsâ€. Chemistry of Materials, 2002, 14, 969-982.	6.7	588
16	Photoluminescent Carbogenic Dots. Chemistry of Materials, 2008, 20, 4539-4541.	6.7	571
17	Graphitic Nitrogen Triggers Red Fluorescence in Carbon Dots. ACS Nano, 2017, 11, 12402-12410.	14.6	550
18	Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 2011, 166, 119-135.	14.7	547

#	Article	IF	CITATIONS
19	Microwave-Assisted Chemistry: Synthetic Applications for Rapid Assembly of Nanomaterials and Organics. Accounts of Chemical Research, 2014, 47, 1338-1348.	15.6	542
20	Photoanodes based on TiO ₂ and α-Fe ₂ O ₃ for solar water splitting – superior role of 1D nanoarchitectures and of combined heterostructures. Chemical Society Reviews, 2017, 46, 3716-3769.	38.1	535
21	Liquidâ€Phase Exfoliation of Graphite Towards Solubilized Graphenes. Small, 2009, 5, 1841-1845.	10.0	508
22	Photocatalysis with Reduced TiO ₂ : From Black TiO ₂ to Cocatalyst-Free Hydrogen Production. ACS Catalysis, 2019, 9, 345-364.	11.2	495
23	Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review. Chemistry of Materials, 2011, 23, 3255-3272.	6.7	445
24	Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catalysis, 2020, 10, 2231-2259.	11.2	426
25	Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene. Small, 2010, 6, 2885-2891.	10.0	386
26	Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIFâ€8 Composites for Oil–Water Separation. Angewandte Chemie - International Edition, 2016, 55, 1178-1182.	13.8	370
27	Fullâ€Color Inorganic Carbon Dot Phosphors for Whiteâ€Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700416.	7.3	360
28	Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives. ACS Nano, 2013, 7, 6434-6464.	14.6	349
29	Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots. Advanced Materials, 2018, 30, e1705913.	21.0	349
30	Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chemical Society Reviews, 2015, 44, 8410-8423.	38.1	342
31	Fe ₃ O ₄ (iron oxide)-supported nanocatalysts: synthesis, characterization and applications in coupling reactions. Green Chemistry, 2016, 18, 3184-3209.	9.0	342
32	Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies. Accounts of Chemical Research, 2015, 48, 182-191.	15.6	339
33	Organic-coated silver nanoparticles in biological and environmental conditions: Fate, stability and toxicity. Advances in Colloid and Interface Science, 2014, 204, 15-34.	14.7	320
34	Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology Advances, 2015, 33, 1162-1176.	11.7	301
35	Catalytic Efficiency of Iron(III) Oxides in Decomposition of Hydrogen Peroxide:  Competition between the Surface Area and Crystallinity of Nanoparticles. Journal of the American Chemical Society, 2007, 129, 10929-10936.	13.7	294
36	Recent development of covalent organic frameworks (COFs): synthesis and catalytic (organic-electro-photo) applications. Materials Horizons, 2020, 7, 411-454.	12.2	291

#	Article	IF	Citations
37	In vivo theranostics with near-infrared-emitting carbon dots—highly efficient photothermal therapy based on passive targeting after intravenous administration. Light: Science and Applications, 2018, 7, 91.	16.6	289
38	The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials, 2011, 32, 4704-4713.	11.4	286
39	Green and simple route toward boron doped carbon dots with significantly enhanced non-linear optical properties. Carbon, 2015, 83, 173-179.	10.3	282
40	Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Scientific Reports, 2018, 8, 4589.	3.3	281
41	Îμ-Fe ₂ O ₃ : An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling. Chemistry of Materials, 2010, 22, 6483-6505.	6.7	276
42	Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2013, 261, 295-306.	12.4	273
43	Silica-decorated magnetic nanocomposites for catalytic applications. Coordination Chemistry Reviews, 2015, 288, 118-143.	18.8	268
44	Amorphous Iron(III) OxideA Review. Journal of Physical Chemistry B, 2007, 111, 4003-4018.	2.6	260
45	Aqueous-phase exfoliation of graphite in the presence of polyvinylpyrrolidone for the production of water-soluble graphenes. Solid State Communications, 2009, 149, 2172-2176.	1.9	255
46	Toxicity of carbon dots – Effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon, 2016, 99, 238-248.	10.3	255
47	Organic functionalisation of graphenes. Chemical Communications, 2010, 46, 1766.	4.1	254
48	Carbon Dot Nanothermometry: Intracellular Photoluminescence Lifetime Thermal Sensing. ACS Nano, 2017, 11, 1432-1442.	14.6	243
49	Photoluminescence effects of graphitic core size and surface functional groups in carbon dots: COOâ° induced red-shift emission. Carbon, 2014, 70, 279-286.	10.3	240
50	Electrocatalytic methanol oxidation over Cu, Ni and bimetallic Cu-Ni nanoparticles supported on graphitic carbon nitride. Applied Catalysis B: Environmental, 2019, 244, 272-283.	20.2	235
51	Review on High Valent Fe ^{VI} (Ferrate): A Sustainable Green Oxidant in Organic Chemistry and Transformation of Pharmaceuticals. ACS Sustainable Chemistry and Engineering, 2016, 4, 18-34.	6.7	214
52	Chemistry, properties, and applications of fluorographene. Applied Materials Today, 2017, 9, 60-70.	4.3	211
53	Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap. Nature Communications, 2017, 8, 996.	12.8	210
54	Graphitic Nitrogen Doping in Carbon Dots Causes Red-Shifted Absorption. Journal of Physical Chemistry C, 2016, 120, 1303-1308.	3.1	207

#	Article	IF	Citations
55	Doping with Graphitic Nitrogen Triggers Ferromagnetism in Graphene. Journal of the American Chemical Society, 2017, 139, 3171-3180.	13.7	202
56	Gd(iii)-doped carbon dots as a dual fluorescent-MRI probe. Journal of Materials Chemistry, 2012, 22, 23327.	6.7	199
57	Nanoporous Nitrogenâ€Doped Graphene Oxide/Nickel Sulfide Composite Sheets Derived from a Metalâ€Organic Framework as an Efficient Electrocatalyst for Hydrogen and Oxygen Evolution. Advanced Functional Materials, 2017, 27, 1700451.	14.9	198
58	Silica-nanosphere-based organic–inorganic hybrid nanomaterials: synthesis, functionalization and applications in catalysis. Green Chemistry, 2015, 17, 3207-3230.	9.0	191
59	On the Controlled Loading of Single Platinum Atoms as a Coâ€Catalyst on TiO ₂ Anatase for Optimized Photocatalytic H ₂ Generation. Advanced Materials, 2020, 32, e1908505.	21.0	189
60	Photoluminescent Carbon Nanostructures. Chemistry of Materials, 2016, 28, 4085-4128.	6.7	186
61	Ferrate(VI)-Induced Arsenite and Arsenate Removal by In Situ Structural Incorporation into Magnetic Iron(III) Oxide Nanoparticles. Environmental Science & Environmental Science & Rechnology, 2013, 47, 3283-3292.	10.0	185
62	Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere, 2011, 82, 1178-1184.	8.2	183
63	Carbon Dot Fluorescence-Lifetime-Encoded Anti-Counterfeiting. ACS Applied Materials & Discrete Proceedings of the Counterfaces, 2018, 10, 29902-29908.	8.0	183
64	Influence of Doping and Temperature on Solvatochromic Shifts in Optical Spectra of Carbon Dots. Journal of Physical Chemistry C, 2016, 120, 10591-10604.	3.1	179
65	Luminescent Surface Quaternized Carbon Dots. Chemistry of Materials, 2012, 24, 6-8.	6.7	176
66	Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids. Journal of Physical Chemistry C, 2013, 117, 6842-6850.	3.1	163
67	Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chemical Society Reviews, 2018, 47, 3899-3990.	38.1	161
68	Plasmonâ€Enhanced Photoelectrochemical Water Splitting for Efficient Renewable Energy Storage. Advanced Materials, 2019, 31, e1805513.	21.0	159
69	Iron-Oxide-Supported Nanocarbon in Lithium-Ion Batteries, Medical, Catalytic, and Environmental Applications. ACS Nano, 2014, 8, 7571-7612.	14.6	157
70	Interactions of Aqueous Ag ⁺ with Fulvic Acids: Mechanisms of Silver Nanoparticle Formation and Investigation of Stability. Environmental Science & Environmental Sc	10.0	156
71	Shape Controlled Hierarchical Porous Hydrophobic/Oleophilic Metalâ€Organic Nanofibrous Gel Composites for Oil Adsorption. Advanced Materials, 2017, 29, 1605307.	21.0	155
72	The influence of complexing agent concentration on particle size in the process of SERS active silver colloid synthesis. Journal of Materials Chemistry, 2005, 15, 1099-1105.	6.7	154

#	Article	IF	CITATIONS
73	Superparamagnetic maghemite nanoparticles from solid-state synthesis – Their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials, 2009, 30, 2855-2863.	11.4	152
74	Acute and Chronic Toxicity Effects of Silver Nanoparticles (NPs) on <i>Drosophila melanogaster</i> Environmental Science & Drosophila melanogaster	10.0	147
75	Synthesis and Characterization of \hat{I}^3 -Fe ₂ O ₃ /Carbon Hybrids and Their Application in Removal of Hexavalent Chromium Ions from Aqueous Solutions. Langmuir, 2012, 28, 3918-3930.	3.5	145
76	Ag@Co _{<i>x</i>} P Core–Shell Heterogeneous Nanoparticles as Efficient Oxygen Evolution Reaction Catalysts. ACS Catalysis, 2017, 7, 7038-7042.	11.2	144
77	Metal–Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Liâ€lon Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1900532.	14.9	141
78	Nanocrystalline Iron Oxides, Composites, and Related Materials as a Platform for Electrochemical, Magnetic, and Chemical Biosensors. Chemistry of Materials, 2014, 26, 6653-6673.	6.7	140
79	Biogeochemistry of selenium. A review. Environmental Chemistry Letters, 2015, 13, 49-58.	16.2	140
80	Human virus detection with graphene-based materials. Biosensors and Bioelectronics, 2020, 166, 112436.	10.1	140
81	Hydrophobic Metal–Organic Frameworks. Advanced Materials, 2019, 31, e1900820.	21.0	138
82	Microwave-assisted synthesis $\hat{a} \in \text{``Catalytic applications in aqueous media. Coordination Chemistry Reviews, 2015, 291, 68-94.}$	18.8	136
83	Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chemical Reviews, 2021, 121, 13620-13697.	47.7	136
84	Singleâ€Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications. Small, 2021, 17, e2006473.	10.0	135
85	Cyanographene and Graphene Acid: Emerging Derivatives Enabling High-Yield and Selective Functionalization of Graphene. ACS Nano, 2017, 11, 2982-2991.	14.6	133
86	Silver nanoparticles strongly enhance and restore bactericidal activity of inactive antibiotics against multiresistant Enterobacteriaceae. Colloids and Surfaces B: Biointerfaces, 2016, 142, 392-399.	5.0	131
87	The Rise of Magnetically Recyclable Nanocatalysts. ChemCatChem, 2014, 6, 3312-3313.	3.7	130
88	Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene. Advanced Materials, 2019, 31, e1900323.	21.0	129
89	Carbon dot hybrids with oligomeric silsesquioxane: solid-state luminophores with high photoluminescence quantum yield and applicability in white light emitting devices. Chemical Communications, 2015, 51, 2950-2953.	4.1	125
90	Polyacrylate-Assisted Size Control of Silver Nanoparticles and Their Catalytic Activity. Chemistry of Materials, 2014, 26, 1332-1339.	6.7	124

#	Article	IF	Citations
91	Carbon Nitrideâ∈Based Ruthenium Single Atom Photocatalyst for CO ₂ Reduction to Methanol. Small, 2021, 17, e2006478.	10.0	124
92	Iron(II,III)–Polyphenol Complex Nanoparticles Derived from Green Tea with Remarkable Ecotoxicological Impact. ACS Sustainable Chemistry and Engineering, 2014, 2, 1674-1680.	6.7	122
93	Strong and Nonspecific Synergistic Antibacterial Efficiency of Antibiotics Combined with Silver Nanoparticles at Very Low Concentrations Showing No Cytotoxic Effect. Molecules, 2016, 21, 26.	3.8	121
94	Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors. Advanced Materials, 2021, 33, e2004560.	21.0	121
95	Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: A review. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014, 49, 212-228.	1.5	119
96	Multimodal Action and Selective Toxicity of Zerovalent Iron Nanoparticles against Cyanobacteria. Environmental Science & Description (2012), 46, 2316-2323.	10.0	118
97	Ferrate(VI)-Prompted Removal of Metals in Aqueous Media: Mechanistic Delineation of Enhanced Efficiency via Metal Entrenchment in Magnetic Oxides. Environmental Science & Enp.; Technology, 2015, 49, 2319-2327.	10.0	118
98	Shapeâ€Assisted 2D MOF/Graphene Derived Hybrids as Exceptional Lithiumâ€ion Battery Electrodes. Advanced Functional Materials, 2019, 29, 1902539.	14.9	118
99	Determining Plasmonic Hot Electrons and Photothermal Effects during H ₂ Evolution with TiN–Pt Nanohybrids. ACS Catalysis, 2020, 10, 5261-5271.	11.2	118
100	Surfactant-Derived Amphiphilic Carbon Dots with Tunable Photoluminescence. Journal of Physical Chemistry C, 2013, 117, 24991-24996.	3.1	117
101	Anaerobic Reaction of Nanoscale Zerovalent Iron with Water: Mechanism and Kinetics. Journal of Physical Chemistry C, 2014, 118, 13817-13825.	3.1	114
102	Room temperature organic magnets derived from sp3 functionalized graphene. Nature Communications, 2017, 8, 14525.	12.8	112
103	Maghemite Nanoparticles by View of Mössbauer Spectroscopy. Journal of Nanoscience and Nanotechnology, 2006, 6, 926-947.	0.9	111
104	Hemocompatibility evaluation of different silver nanoparticle concentrations employing a modified Chandler-loop in vitro assay on human blood. Acta Biomaterialia, 2013, 9, 7460-7468.	8.3	111
105	Initial Study on the Toxicity of Silver Nanoparticles (NPs) against <i>Paramecium caudatum </i> Journal of Physical Chemistry C, 2009, 113, 4296-4300.	3.1	110
106	Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry. Small, 2016, 12, 466-476.	10.0	107
107	Synthesis, Characterization and Aspects of Superhydrophobic Functionalized Carbon Nanotubes. Chemistry of Materials, 2008, 20, 2884-2886.	6.7	105
108	Air Stable Magnetic Bimetallic Fe–Ag Nanoparticles for Advanced Antimicrobial Treatment and Phosphorus Removal. Environmental Science & Environment	10.0	105

#	Article	IF	CITATIONS
109	Graphene and carbon quantum dots electrochemistry. Electrochemistry Communications, 2015, 52, 75-79.	4.7	103
110	Photoanodes with Fully Controllable Texture: The Enhanced Water Splitting Efficiency of Thin Hematite Films Exhibiting Solely (110) Crystal Orientation. ACS Nano, 2015, 9, 7113-7123.	14.6	102
111	Band gaps and structural properties of graphene halides and their derivates: A hybrid functional study with localized orbital basis sets. Journal of Chemical Physics, 2012, 137, 034709.	3.0	101
112	Oxidation of Microcystin-LR by Ferrate(VI): Kinetics, Degradation Pathways, and Toxicity Assessments. Environmental Science &	10.0	98
113	Environmental Applications of Chemically Pure Natural Ferrihydrite. Environmental Science & Emp; Technology, 2007, 41, 4367-4374.	10.0	97
114	Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale, 2016, 8, 7197-7202.	5.6	97
115	α-Fe ₂ O ₃ /TiO ₂ 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting. Nanoscale, 2017, 9, 134-142.	5.6	97
116	Nature of Absorption Bands in Oxygen-Functionalized Graphitic Carbon Dots. Journal of Physical Chemistry C, 2015, 119, 13369-13373.	3.1	96
117	Tailoring topological order and π-conjugation to engineer quasi-metallic polymers. Nature Nanotechnology, 2020, 15, 437-443.	31.5	95
118	Thermal behaviour of iron(ii) oxalate dihydrate in the atmosphere of its conversion gases. Journal of Materials Chemistry, 2006, 16, 1273.	6.7	94
119	Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Advanced Materials, 2016, 28, 5045-5053.	21.0	94
120	Structure and photocatalytic performance of magnetically separable titania photocatalysts for the degradation of propachlor. Applied Catalysis B: Environmental, 2009, 87, 181-189.	20.2	93
121	Iron and Iron Oxide Nanoparticles Synthesized with Green Tea Extract: Differences in Ecotoxicological Profile and Ability To Degrade Malachite Green. ACS Sustainable Chemistry and Engineering, 2018, 6, 8679-8687.	6.7	93
122	Ultrathin 2D Cobalt Zeoliteâ€Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution. Advanced Science, 2018, 5, 1801029.	11.2	92
123	Down-conversion monochromatic light-emitting diodes with the color determined by the active layer thickness and concentration of carbon dots. Journal of Materials Chemistry C, 2015, 3, 6613-6615.	5.5	91
124	Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives. Journal of Physical Chemistry Letters, 2015, 6, 1430-1434.	4.6	90
125	Iron(III) Oxide Nanoparticles in the Thermally Induced Oxidative Decomposition of Prussian Blue, Fe4[Fe(CN)6]3. Crystal Growth and Design, 2004, 4, 1317-1325.	3.0	89
126	Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 2015, 93, 636-647.	10.3	89

#	Article	IF	Citations
127	Influence of Ti ³⁺ defect-type on heterogeneous photocatalytic H ₂ evolution activity of TiO ₂ . Journal of Materials Chemistry A, 2020, 8, 1432-1442.	10.3	89
128	Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Materials Chemistry and Physics, 2008, 111, 77-81.	4.0	88
129	Chitosan-based synthesis of magnetically-driven nanocomposites with biogenic magnetite core, controlled silver size, and high antimicrobial activity. Green Chemistry, 2012, 14, 2550.	9.0	87
130	A high efficiency H ₂ S gas sensor material: paper like Fe ₂ O ₃ /graphene nanosheets and structural alignment dependency of device efficiency. Journal of Materials Chemistry A, 2014, 2, 6714-6717.	10.3	87
131	Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe ₂ O ₃ –Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chemistry, 2016, 18, 2363-2373.	9.0	87
132	Enhanced antibacterial effect of antibiotics in combination with silver nanoparticles against animal pathogens. Veterinary Journal, 2016, 209, 174-179.	1.7	87
133	Chemical nature of boron and nitrogen dopant atoms in graphene strongly influences its electronic properties. Physical Chemistry Chemical Physics, 2014, 16, 14231-14235.	2.8	86
134	Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties. Advanced Materials, 2015, 27, 2305-2310.	21.0	84
135	Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3027-3038.	6.7	84
136	Polyacrylate-assisted synthesis of stable copper nanoparticles and copper(I) oxide nanocubes with high catalytic efficiency. Journal of Materials Chemistry, 2009, 19, 8463.	6.7	83
137	Quaternized carbon dot-modified graphene oxide for selective cell labelling – controlled nucleus and cytoplasm imaging. Chemical Communications, 2014, 50, 10782.	4.1	82
138	Remarkable efficiency of phosphate removal: Ferrate(VI)-induced in situ sorption on core-shell nanoparticles. Water Research, 2016, 103, 83-91.	11.3	82
139	Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 2015, 5, 15091.	3.3	81
140	Emerging MXene@Metal–Organic Framework Hybrids: Design Strategies toward Versatile Applications. ACS Nano, 2021, 15, 18742-18776.	14.6	81
141	Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. Chemosphere, 2017, 188, 403-413.	8.2	80
142	Silver nanomaterials: synthesis and (electro/photo) catalytic applications. Chemical Society Reviews, 2021, 50, 11293-11380.	38.1	79
143	Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrasonics Sonochemistry, 2008, 15, 257-264.	8.2	78
144	Unveiling BiVO ₄ nanorods as a novel anode material for high performance lithium ion capacitors: beyond intercalation strategies. Journal of Materials Chemistry A, 2018, 6, 6096-6106.	10.3	78

#	Article	IF	CITATIONS
145	Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst. Nature Nanotechnology, 2022, 17, 485-492.	31.5	78
146	Magnetically Assisted Surface-Enhanced Raman Scattering Selective Determination of Dopamine in an Artificial Cerebrospinal Fluid and a Mouse Striatum Using Fe ₃ O ₄ /Ag Nanocomposite. Analytical Chemistry, 2014, 86, 2939-2946.	6.5	77
147	Iron Oxide-Supported Copper Oxide Nanoparticles (Nanocat-Fe-CuO): Magnetically Recyclable Catalysts for the Synthesis of Pyrazole Derivatives, 4-Methoxyaniline, and Ullmann-type Condensation Reactions. ACS Sustainable Chemistry and Engineering, 2014, 2, 1699-1706.	6.7	75
148	Magnetic gold nanocatalyst (nanocat-Fe–Au): catalytic applications for the oxidative esterification and hydrogen transfer reactions. Green Chemistry, 2014, 16, 4137-4143.	9.0	75
149	A carbon dot-based tandem luminescent solar concentrator. Nanoscale, 2020, 12, 6664-6672.	5.6	75
150	Quantification of the Interaction Forces between Metals and Graphene by Quantum Chemical Calculations and Dynamic Force Measurements under Ambient Conditions. ACS Nano, 2013, 7, 1646-1651.	14.6	73
151	Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon, 2013, 61, 640-643.	10.3	72
152	Engineering aspects of ferrate in water and wastewater treatment – a review. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2014, 49, 1603-1614.	1.7	72
153	In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. International Journal of Nanomedicine, 2015, 10, 949.	6.7	72
154	Advanced Sensing of Antibiotics with Magnetic Gold Nanocomposite: Electrochemical Detection of Chloramphenicol. Chemistry - A European Journal, 2016, 22, 14279-14284.	3.3	72
155	Ferrate(VI) Oxidation of Weak-Acid Dissociable Cyanides. Environmental Science & Emp; Technology, 2008, 42, 3005-3010.	10.0	71
156	An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradationâ€"A competition between homogeneous and heterogeneous catalysis. Applied Catalysis A: General, 2009, 366, 325-332.	4.3	71
157	Mechanisms and Efficiency of the Simultaneous Removal of Metals and Cyanides by Using Ferrate(VI): Crucial Roles of Nanocrystalline Iron(III) Oxyhydroxides and Metal Carbonates. Chemistry - A European Journal, 2011, 17, 10097-10105.	3.3	71
158	Fe ⁰ Nanomotors in Ton Quantities (10 ²⁰ Units) for Environmental Remediation. Chemistry - A European Journal, 2016, 22, 4789-4793.	3.3	71
159	Title is missing!. Hyperfine Interactions, 2002, 139/140, 597-606.	0.5	70
160	Magnetically recyclable magnetite–palladium (Nanocat-Fe–Pd) nanocatalyst for the Buchwald–Hartwig reaction. Green Chemistry, 2014, 16, 3494-3500.	9.0	70
161	Carbon Electrodes Modified by Nanoscopic Iron(III) Oxides to Assemble Chemical Sensors for the Hydrogen Peroxide Amperometric Detection. Electroanalysis, 2007, 19, 1850-1854.	2.9	69
162	Charge binding of rhodamine derivative to OHâ^' stabilized nanomaghemite: Universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomaterialia, 2012, 8, 2068-2076.	8.3	69

#	Article	IF	CITATIONS
163	Ultrastable Natural Ester-Based Nanofluids for High Voltage Insulation Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25202-25209.	8.0	69
164	Sbâ€Doped SnO ₂ Nanorods Underlayer Effect to the αâ€Fe ₂ O ₃ Nanorods Sheathed with TiO ₂ for Enhanced Photoelectrochemical Water Splitting. Small, 2018, 14, e1703860.	10.0	69
165	Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene. Nature Communications, 2018, 9, 2831.	12.8	68
166	In Situ Generation of Pd–Pt Core–Shell Nanoparticles on Reduced Graphene Oxide (Pd@Pt/rGO) Using Microwaves: Applications in Dehalogenation Reactions and Reduction of Olefins. ACS Applied Materials & Dehalogenation 9, 2815-2824.	8.0	67
167	Hydrophilic Nanotube Supported Graphene–Water Dispersible Carbon Superstructure with Excellent Conductivity. Advanced Functional Materials, 2015, 25, 1481-1487.	14.9	66
168	Facile fabrication of tin-doped hematite photoelectrodes – effect of doping on magnetic properties and performance for light-induced water splitting. Journal of Materials Chemistry, 2012, 22, 23232.	6.7	65
169	The production of chemically converted graphenes from graphite fluoride. Carbon, 2012, 50, 1425-1428.	10.3	65
170	Enhanced Formation of Silver Nanoparticles in Ag ⁺ -NOM-Iron(II, III) Systems and Antibacterial Activity Studies. Environmental Science & Env	10.0	65
171	Toxicity of graphene oxide against algae and cyanobacteria: Nanoblade-morphology-induced mechanical injury and self-protection mechanism. Carbon, 2019, 155, 386-396.	10.3	65
172	Silica-supported Fe/Fe–O nanoparticles for the catalytic hydrogenation of nitriles to amines in the presence of aluminium additives. Nature Catalysis, 2022, 5, 20-29.	34.4	65
173	A facile graphene oxide based sensor for electrochemical detection of neonicotinoids. Biosensors and Bioelectronics, 2017, 89, 532-537.	10.1	64
174	High-Yield Alkylation and Arylation of Graphene via Grignard Reaction with Fluorographene. Chemistry of Materials, 2017, 29, 926-930.	6.7	64
175	Remarkable efficiency of ultrafine superparamagnetic iron(III) oxide nanoparticles toward arsenate removal from aqueous environment. Chemosphere, 2013, 93, 2690-2697.	8.2	63
176	A glucose biosensor based on surface active maghemite nanoparticles. Biosensors and Bioelectronics, 2013, 45, 13-18.	10.1	63
177	Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles. Food Chemistry, 2016, 203, 505-512.	8.2	62
178	Magnetically Controllable Silver Nanocomposite with Multifunctional Phosphotriazine Matrix and High Antimicrobial Activity. Advanced Functional Materials, 2010, 20, 2347-2354.	14.9	61
179	Templated Dewetting–Alloying of NiCu Bilayers on TiO ₂ Nanotubes Enables Efficient Noble-Metal-Free Photocatalytic H ₂ Evolution. ACS Catalysis, 2018, 8, 5298-5305.	11,2	61
180	Magnetic Nanoparticles with Covalently Bound Self-Assembled Protein Corona for Advanced Biomedical Applications. Journal of Physical Chemistry C, 2013, 117, 20320-20331.	3.1	60

#	Article	IF	CITATIONS
181	Fluorinated graphenes as advanced biosensors $\hat{a} \in \text{``effect of fluorine coverage on electron transfer properties and adsorption of biomolecules. Nanoscale, 2016, 8, 12134-12142.}$	5.6	60
182	Vapor-Infiltration Approach toward Selenium/Reduced Graphene Oxide Composites Enabling Stable and High-Capacity Sodium Storage. ACS Nano, 2018, 12, 7397-7405.	14.6	60
183	A simple route towards magnetically modified zeolites. Microporous and Mesoporous Materials, 2003, 58, 155-162.	4.4	59
184	Novel 1D chain Fe(III)-salen-like complexes involving anionic heterocyclic N-donor ligands. Synthesis, X-ray structure, magnetic, 57Fe Mössbauer, and biological activity studies. Dalton Transactions, 2009, , 9870.	3.3	59
185	Antibacterial activity and toxicity of silver – nanosilver versus ionic silver. Journal of Physics: Conference Series, 2011, 304, 012029.	0.4	59
186	Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to \hat{I}^3 -valerolactone, alkyl levulinates or levulinic acid. Green Chemistry, 2016, 18, 5586-5593.	9.0	59
187	An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure. Scientific Reports, 2018, 8, 1901.	3.3	59
188	Ferrofluids from Magneticâ^'Chitosan Hybrids. Chemistry of Materials, 2008, 20, 3298-3305.	6.7	57
189	Gold nanoparticle-decorated graphene oxide: Synthesis and application in oxidation reactions under benign conditions. Journal of Molecular Catalysis A, 2016, 424, 121-127.	4.8	57
190	Functional Nanosheet Synthons by Covalent Modification of Transition-Metal Dichalcogenides. Chemistry of Materials, 2017, 29, 2066-2073.	6.7	56
191	Immobilized Enzymes on Graphene as Nanobiocatalyst. ACS Applied Materials & Samp; Interfaces, 2020, 12, 250-259.	8.0	56
192	Solar steam generation on scalable ultrathin thermoplasmonic TiN nanocavity arrays. Nano Energy, 2021, 83, 105828.	16.0	56
193	Immobilization of magnetic iron oxide nanoparticles on laponite discs – an easy way to biocompatible ferrofluids and ferrogels. Journal of Materials Chemistry, 2010, 20, 5418.	6.7	55
194	Magnetically-Assisted Surface Enhanced Raman Spectroscopy (MA-SERS) for Label-Free Determination of Human Immunoglobulin G (IgG) in Blood Using Fe ₃ O ₄ @Ag Nanocomposite. Analytical Chemistry, 2014, 86, 11107-11114.	6.5	55
195	A chiral spin crossover metal–organic framework. Chemical Communications, 2014, 50, 4059-4061.	4.1	55
196	A critical review of selenium analysis in natural water samples. Trends in Environmental Analytical Chemistry, 2015, 5, 1-7.	10.3	55
197	Reactivity of fluorographene is triggered by point defects: beyond the perfect 2D world. Nanoscale, 2018, 10, 4696-4707.	5.6	55
198	Maghemiteâ€Copper Nanocomposites: Applications for Ligandâ€Free Crossâ€Coupling (Câ^'O, Câ^'S, and Câ^'N) Reactions. ChemCatChem, 2015, 7, 3495-3502.	3.7	54

#	Article	IF	Citations
199	Fe(0)-embedded thermally reduced graphene oxide as efficient nanocatalyst for reduction of nitro compounds to amines. Chemical Engineering Journal, 2020, 382, 122469.	12.7	54
200	Advanced Cr(VI) sorption properties of activated carbon produced via pyrolysis of the "Posidonia oceanica―seagrass. Journal of Hazardous Materials, 2021, 405, 124274.	12.4	54
201	Core–Shell Fe/FeS Nanoparticles with Controlled Shell Thickness for Enhanced Trichloroethylene Removal. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35424-35434.	8.0	53
202	Water dispersible functionalized graphene fluoride with significant nonlinear optical response. Chemical Physics Letters, 2012, 543, 101-105.	2.6	52
203	Syntheses, structures and magnetic properties of azido- and phenoxo-bridged complexes of manganese containing tridentate aroylhydrazone based ligands. Polyhedron, 2013, 61, 45-55.	2.2	52
204	Silica-Based Magnetic Manganese Nanocatalyst – Applications in the Oxidation of Organic Halides and Alcohols. ACS Sustainable Chemistry and Engineering, 2016, 4, 1123-1130.	6.7	52
205	P―and Fâ€coâ€doped Carbon Nitride Nanocatalysts for Photocatalytic CO ₂ Reduction and Thermocatalytic Furanics Synthesis from Sugars. ChemSusChem, 2020, 13, 5231-5238.	6.8	52
206	The Effect of Surface Area and Crystal Structure on the Catalytic Efficiency of Iron(III) Oxide Nanoparticles in Hydrogen Peroxide Decomposition. European Journal of Inorganic Chemistry, 2010, 2010, 2343-2351.	2.0	50
207	Avidin Functionalized Maghemite Nanoparticles and Their Application for Recombinant Human Biotinyl-SERCA Purification. Langmuir, 2012, 28, 15392-15401.	3.5	50
208	Electrochemical determination of hydrogen peroxide production by isolated mitochondria: A novel nanocomposite carbon–maghemite nanoparticle electrode. Sensors and Actuators B: Chemical, 2013, 176, 315-322.	7.8	50
209	Adsorption and photocatalysis of nanocrystalline TiO2 particles for Reactive Red 195 removal: effect of humic acids, anions and scavengers. Environmental Science and Pollution Research, 2015, 22, 16514-16524.	5.3	50
210	Integrated nanocatalysts: a unique class of heterogeneous catalysts. Journal of Materials Chemistry A, 2015, 3, 8241-8245.	10.3	50
211	Yellow emitting carbon dots with superior colloidal, thermal, and photochemical stabilities. Journal of Materials Chemistry C, 2016, 4, 9798-9803.	5.5	50
212	Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chemical Communications, 2012, 48, 11398.	4.1	49
213	Carbon dots for inÂvivo fluorescence imaging of adipose tissue-derived mesenchymal stromal cells. Carbon, 2019, 152, 434-443.	10.3	49
214	Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis. Nano Letters, 2020, 20, 3663-3672.	9.1	49
215	Silver Nanoparticles Modified by Gelatin with Extraordinary pH Stability and Long-Term Antibacterial Activity. PLoS ONE, 2014, 9, e103675.	2.5	48
216	A Magnetically Drivable Nanovehicle for Curcumin with Antioxidant Capacity and MRI Relaxation Properties. Chemistry - A European Journal, 2014, 20, 11913-11920.	3.3	48

#	Article	IF	CITATIONS
217	Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano, 2021, 15, 17275-17298.	14.6	48
218	Hierarchical porous metal–organic framework materials for efficient oil–water separation. Journal of Materials Chemistry A, 2022, 10, 2751-2785.	10.3	48
219	Preparation, stability and cytocompatibility of magnetic/PLA-PEG hybrids. Nanoscale, 2010, 2, 564.	5.6	47
220	Magnetically retrievable MFe2O4 spinel (M = Mn, Co, Cu, Ni, Zn) catalysts for oxidation of benzylic alcohols to carbonyls. RSC Advances, 2014, 4, 6597.	3.6	47
221	2D Chemistry: Chemical Control of Graphene Derivatization. Journal of Physical Chemistry Letters, 2018, 9, 3580-3585.	4.6	47
222	Cobalt-entrenched N-, O-, and S-tridoped carbons as efficient multifunctional sustainable catalysts for base-free selective oxidative esterification of alcohols. Green Chemistry, 2018, 20, 3542-3556.	9.0	47
223	Generation and Stabilization of Small Platinum Clusters Pt _{12±<i>x</i>} Inside a Metalâ€"Organic Framework. Journal of the American Chemical Society, 2019, 141, 13962-13969.	13.7	47
224	FeO-based nanostructures and nanohybrids for photoelectrochemical water splitting. Progress in Materials Science, 2020, 110, 100632.	32.8	47
225	Core–shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst. Biosensors and Bioelectronics, 2014, 52, 159-165.	10.1	46
226	Fluorographites (CF _{<i>x</i>}) _{<i>n</i>} Exhibit Improved Heterogeneous Electronâ€Transfer Rates with Increasing Level of Fluorination: Towards the Sensing of Biomolecules. Chemistry - A European Journal, 2014, 20, 6665-6671.	3.3	46
227	Theranostics of Epitaxially Condensed Colloidal Nanocrystal Clusters, through a Soft Biomineralization Route. Chemistry of Materials, 2014, 26, 2062-2074.	6.7	46
228	An Operando X-ray Absorption Spectroscopy Study of a NiCuâ^'TiO ₂ Photocatalyst for H ₂ Evolution. ACS Catalysis, 2020, 10, 8293-8302.	11.2	46
229	Elucidating the role of surface states of BiVO4 with Mo doping and a CoOOH co-catalyst for photoelectrochemical water splitting. Journal of Power Sources, 2021, 483, 229080.	7.8	46
230	Metal complexes as anticancer agents 2. Iron(III) and copper(II) bio-active complexes with N6-benzylaminopurine derivatives. Inorganica Chimica Acta, 2001, 323, 119-129.	2.4	45
231	Interaction of Graphene and Arenes with Noble Metals. Journal of Physical Chemistry C, 2012, 116, 14151-14162.	3.1	45
232	Reproducible discrimination between Gram-positive and Gram-negative bacteria using surface enhanced Raman spectroscopy with infrared excitation. Analyst, The, 2012, 137, 2866.	3.5	45
233	Highly concentrated, reactive and stable dispersion of zero-valent iron nanoparticles: Direct surface modification and site application. Chemical Engineering Journal, 2015, 262, 813-822.	12.7	45
234	Continuous flow hydrogenation of nitroarenes, azides and alkenes using maghemite–Pd nanocomposites. Catalysis Science and Technology, 2016, 6, 152-160.	4.1	45

#	Article	IF	Citations
235	A facile synthetic route toward air-stable magnetic nanoalloys with Fe–Ni/Fe–Co core and iron oxide shell. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	44
236	Baseâ€Free Transfer Hydrogenation of Nitroarenes Catalyzed by Microâ€Mesoporous Iron Oxide. ChemCatChem, 2016, 8, 2351-2355.	3.7	44
237	Synthesis of flower-like magnetite nanoassembly: Application in the efficient reduction of nitroarenes. Scientific Reports, 2017, 7, 11585.	3.3	44
238	Onâ€Surface Synthesis of Ethynyleneâ€Bridged Anthracene Polymers. Angewandte Chemie - International Edition, 2019, 58, 6559-6563.	13.8	44
239	Advanced Photocatalysts: Pinning Single Atom Coâ€Catalysts on Titania Nanotubes. Advanced Functional Materials, 2021, 31, 2102843.	14.9	44
240	Third-order nonlinear optical response and optical limiting of colloidal carbon dots. Optics Express, 2014, 22, 12013.	3.4	43
241	Synthesis, characterization and in vivo evaluation of a magnetic cisplatin delivery nanosystem based on PMAA-graft-PEG copolymers. Journal of Controlled Release, 2016, 243, 342-356.	9.9	43
242	Ultra-small cobalt nanoparticles from molecularly-defined Coâ€"salen complexes for catalytic synthesis of amines. Chemical Science, 2020, 11, 2973-2981.	7.4	43
243	The Hallmarks of Copper Single Atom Catalysts in Direct Alcohol Fuel Cells and Electrochemical CO ₂ Fixation. Advanced Materials Interfaces, 2021, 8, 2001822.	3.7	43
244	Optimized Pt Single Atom Harvesting on TiO ₂ Nanotubesâ€"Towards a Most Efficient Photocatalyst. Small, 2022, 18, e2104892.	10.0	43
245	Comparative Study of Antimicrobial Activity of AgBr and Ag Nanoparticles (NPs). PLoS ONE, 2015, 10, e0119202.	2.5	42
246	Microâ€"mesoporous iron oxides with record efficiency for the decomposition of hydrogen peroxide: morphology driven catalysis for the degradation of organic contaminants. Journal of Materials Chemistry A, 2016, 4, 596-604.	10.3	42
247	Photoelectrochemical and structural properties of TiO 2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication. Catalysis Today, 2017, 287, 130-136.	4.4	42
248	Impact of inorganic ions and natural organic matter on arsenates removal by ferrate(VI): Understanding a complex effect of phosphates ions. Water Research, 2018, 141, 357-365.	11.3	42
249	Sustainable Synthesis of Nanoscale Zerovalent Iron Particles for Environmental Remediation. ChemSusChem, 2020, 13, 3288-3305.	6.8	42
250	Hierarchical assembly of Ti(iv)/Sn(ii) co-doped SnO2 nanosheets along sacrificial titanate nanowires: synthesis, characterization and electrochemical properties. Nanoscale, 2013, 5, 9101.	5.6	41
251	Hysteretic Spin Crossover in Two-Dimensional (2D) Hofmann-Type Coordination Polymers. Inorganic Chemistry, 2015, 54, 8711-8716.	4.0	41
252	On the improvement of PEC activity of hematite thin films deposited by high-power pulsed magnetron sputtering method. Applied Catalysis B: Environmental, 2015, 165, 344-350.	20.2	41

#	Article	IF	Citations
253	Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots. Journal of Materials Chemistry, 2012, 22, 16219.	6.7	40
254	Treatment of chemical warfare agents by zero-valent iron nanoparticles and ferrate(VI)/(III) composite. Journal of Hazardous Materials, 2012, 211-212, 126-130.	12.4	40
255	The effect of the degree of oxidation on broadband nonlinear absorption and ferromagnetic ordering in graphene oxide. Nanoscale, 2016, 8, 2908-2917.	5.6	40
256	Significant Enhancement of Photoactivity in Hybrid TiO ₂ /g-C ₃ N ₄ Nanorod Catalysts Modified with Cu–Ni-Based Nanostructures. ACS Applied Nano Materials, 2018, 1, 2526-2535.	5.0	40
257	Metal–Organic Frameworks: Hydrophobic Metal–Organic Frameworks (Adv. Mater. 32/2019). Advanced Materials, 2019, 31, 1970230.	21.0	40
258	Single Coâ€Atoms as Electrocatalysts for Efficient Hydrazine Oxidation Reaction. Small, 2021, 17, e2006477.	10.0	40
259	Cubic \hat{l}^2 -Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. , 1999, 120/121, 497-501.		39
260	Merging High Doxorubicin Loading with Pronounced Magnetic Response and Bioâ€repellent Properties in Hybrid Drug Nanocarriers. Small, 2012, 8, 2381-2393.	10.0	39
261	Synthesis and Characterization of Tin Titanate Nanotubes: Precursors for Nanoparticulate Snâ€Doped TiO ₂ Anodes with Synergistically Improved Electrochemical Performance. ChemElectroChem, 2014, 1, 1563-1569.	3.4	39
262	High-valent iron-based oxidants to treat perfluorooctanesulfonate and perfluorooctanoic acid in water. Environmental Chemistry Letters, 2014, 12, 413-417.	16.2	39
263	Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water. Physical Chemistry Chemical Physics, 2016, 18, 10637-10646.	2.8	39
264	Semimetallic core-shell TiO 2 nanotubes as a high conductivity scaffold and use in efficient 3D-RuO 2 supercapacitors. Materials Today Energy, 2017, 6, 46-52.	4.7	39
265	An Earthâ€Abundant Niâ€Based Singleâ€Atom Catalyst for Selective Photodegradation of Pollutants. Solar Rrl, 2021, 5, 2100176.	5.8	39
266	Room-temperature ground magnetic state of \acute{E} -Fe2O3: In-field M $\~A$ ¶ssbauer spectroscopy evidence for collinear ferrimagnet. Applied Physics Letters, 2011, 99, .	3.3	38
267	Synthesis, structure, magnetic properties and theoretical calculations of methoxy bridged dinuclear iron(<scp>iii</scp>) complex with hydrazone based O,N,N-donor ligand. Dalton Transactions, 2013, 42, 2803-2812.	3.3	38
268	Lipid Enhanced Exfoliation for Production of Graphene Nanosheets. Journal of Physical Chemistry C, 2013, 117, 11800-11803.	3.1	38
269	The nature of high surface energy sites in graphene and graphite. Carbon, 2014, 73, 448-453.	10.3	38
270	Space weathering simulations through controlled growth of iron nanoparticles on olivine. Icarus, 2014, 237, 75-83.	2.5	38

#	Article	IF	Citations
271	The double-walled nature of TiO 2 nanotubes and formation of tube-in-tube structures – a characterization of different tube morphologies. Electrochimica Acta, 2017, 231, 721-731.	5.2	38
272	Covalently bound DNA on naked iron oxide nanoparticles: Intelligent colloidal nano-vector for cell transfection. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2802-2810.	2.4	38
273	Nanostar morphology of plasmonic particles strongly enhances photoelectrochemical water splitting of TiO2 nanorods with superior incident photon-to-current conversion efficiency in visible/near-infrared region. Electrochimica Acta, 2018, 260, 212-220.	5.2	38
274	Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41089-41097.	8.0	38
275	Highâ€Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine. Advanced Functional Materials, 2018, 28, 1801111.	14.9	38
276	Radiative and Non-Radiative Recombination Pathways in Mixed-Phase TiO2 Nanotubes for PEC Water-Splitting. Catalysts, 2019, 9, 204.	3.5	38
277	Graphitic Carbon Nitride–Nickel Catalyst: From Material Characterization to Efficient Ethanol Electrooxidation. ACS Sustainable Chemistry and Engineering, 2020, 8, 7244-7255.	6.7	38
278	Oxidative degradation of triazine- and sulfonylurea-based herbicides using Fe(VI): The case study of atrazine and iodosulfuron with kinetics and degradation products. Separation and Purification Technology, 2015, 156, 1041-1046.	7.9	37
279	Nanoporous AuPt and AuPtAg alloy co-catalysts formed by dewetting–dealloying on an ordered TiO ₂ nanotube surface lead to significantly enhanced photocatalytic H ₂ generation. Journal of Materials Chemistry A, 2018, 6, 13599-13606.	10.3	37
280	Forming a Highly Active, Homogeneously Alloyed AuPt Co-catalyst Decoration on TiO ₂ Nanotubes Directly During Anodic Growth. ACS Applied Materials & Interfaces, 2018, 10, 18220-18226.	8.0	37
281	On-Surface Synthesis of Gold Porphyrin Derivatives via a Cascade of Chemical Interactions: Planarization, Self-Metalation, and Intermolecular Coupling. Chemistry of Materials, 2019, 31, 3248-3256.	6.7	37
282	Novel solid-state synthesis of \hat{l}_{\pm} -Fe and Fe3O4nanoparticles embedded in a MgO matrix. Nanotechnology, 2006, 17, 607-616.	2.6	36
283	Mesenchymal stromal cell labeling by new uncoated superparamagnetic maghemite nanoparticles in comparison with commercial Resovist & mp;ndash; an initial in vitro study. International Journal of Nanomedicine, 2014, 9, 5355.	6.7	36
284	Arsenite remediation by an amine-rich graphitic carbon nitride synthesized by a novel low-temperature method. Chemical Engineering Journal, 2014, 256, 347-355.	12.7	36
285	Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles. Advanced Functional Materials, 2015, 25, 1822-1831.	14.9	36
286	Purple-emissive carbon dots enhance sensitivity of Si photodetectors to ultraviolet range. Nanoscale, 2020, 12, 8379-8384.	5.6	36
287	Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution. Studia Geophysica Et Geodaetica, 2013, 57, 755-770.	0.5	35
288	Reusable Co-nanoparticles for general and selective $\langle i \rangle N \langle i \rangle$ -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	7.4	35

#	Article	IF	Citations
289	Field emission scanning electron microscopy (FE-SEM) as an approach for nanoparticle detection inside cells. Micron, 2014, 67, 149-154.	2.2	34
290	Fe(III)-functionalized carbon dots—Highly efficient photoluminescence redox catalyst for hydrogenations of olefins and decomposition of hydrogen peroxide. Applied Materials Today, 2017, 7, 179-184.	4.3	34
291	Carbon Dots Detect Water-to-Ice Phase Transition and Act as Alcohol Sensors <i>via</i> Fluorescence Turn-Off/On Mechanism. ACS Nano, 2021, 15, 6582-6593.	14.6	34
292	Hematite Photoanode with Complex Nanoarchitecture Providing Tunable Gradient Doping and Low Onset Potential for Photoelectrochemical Water Splitting. ChemSusChem, 2018, 11, 1873-1879.	6.8	33
293	Light- and temperature-assisted spin state annealing: accessing the hidden multistability. Chemical Science, 2020, 11, 3281-3289.	7.4	33
294	Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. ACS Nano, 2021, 15, 7790-7798.	14.6	33
295	Thermal Decomposition of Ferric Oxalate Tetrahydrate in Oxidative and Inert Atmospheres: The Role of Ferrous Oxalate as an Intermediate. European Journal of Inorganic Chemistry, 2010, 2010, 1110-1118.	2.0	32
296	Dichlorocarbeneâ€Functionalized Fluorographene: Synthesis and Reaction Mechanism. Small, 2015, 11, 3790-3796.	10.0	32
297	Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection. Particle and Particle Systems Characterization, 2017, 34, 1700029.	2.3	32
298	Chemical Tuning of Specific Capacitance in Functionalized Fluorographene. Chemistry of Materials, 2019, 31, 4698-4709.	6.7	32
299	Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. Electrochemistry Communications, 2019, 98, 82-86.	4.7	32
300	UV light-switchable transparent polymer films and invisible luminescent inks based on carbon dots and lanthanide complexes. Journal of Materials Chemistry C, 2016, 4, 7253-7259.	5.5	31
301	Magnetic Carbon Nanocages: An Advanced Architecture with Surface- and Morphology-Enhanced Removal Capacity for Arsenites. ACS Sustainable Chemistry and Engineering, 2017, 5, 5782-5792.	6.7	31
302	Twoâ€Step Spinâ€Crossover with Three Inequivalent Fe ^{II} Sites in a Twoâ€Dimensional Hofmannâ€Type Coordination Polymer. Chemistry - A European Journal, 2017, 23, 10034-10037.	3.3	31
303	Direct evidence of Fe(<scp>v</scp>) and Fe(<scp>iv</scp>) intermediates during reduction of Fe(<scp>vi</scp>) to Fe(<scp>iii</scp>): a nuclear forward scattering of synchrotron radiation approach. Physical Chemistry Chemical Physics, 2015, 17, 21787-21790.	2.8	30
304	Submolecular Resolution by Variation of the Inelastic Electron Tunneling Spectroscopy Amplitude and its Relation to the AFM/STM Signal. Physical Review Letters, 2017, 119, 166001.	7.8	30
305	Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal. Chemical Engineering Journal, 2018, 354, 335-345.	12.7	30
306	Thermal decomposition of Fe2(SO4)3: Demonstration of Fe2O3 polymorphism. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255, 413-417.	1.5	29

#	Article	IF	Citations
307	Fluoro-graphene: nonlinear optical properties. Optics Express, 2013, 21, 21027.	3.4	29
308	NZVI modified magnetic filter paper with high redox and catalytic activities for advanced water treatment technologies. Chemical Communications, 2014, 50, 15673-15676.	4.1	29
309	Recyclable Magnetic Microporous Organic Polymer (MOP) Encapsulated with Palladium Nanoparticles and Co/C Nanobeads for Hydrogenation Reactions. ACS Sustainable Chemistry and Engineering, 2019, 7, 2388-2399.	6.7	29
310	High-performance hydrogen evolution electrocatalysis using proton-intercalated TiO ₂ nanotube arrays as interactive supports for Ir nanoparticles. Journal of Materials Chemistry A, 2020, 8, 22773-22790.	10.3	29
311	Microscale Rockets and Picoliter Containers Engineered from Electrospun Polymeric Microtubes. Small, 2016, 12, 1432-1439.	10.0	28
312	Stealth Iron Oxide Nanoparticles for Organotropic Drug Targeting. Biomacromolecules, 2019, 20, 1375-1384.	5.4	28
313	Re-crystallization of silver nanoparticles in a highly concentrated NaCl environment—a new substrate for surface enhanced IR-visible Raman spectroscopy. CrystEngComm, 2011, 13, 2242.	2.6	27
314	Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. International Journal of Nanomedicine, 2012, 7, 2249.	6.7	27
315	Can zero-valent iron nanoparticles remove waterborne estrogens?. Journal of Environmental Management, 2015, 150, 387-392.	7.8	27
316	An in situ porous cuprous oxide/nitrogen-rich graphitic carbon nanocomposite derived from a metal–organic framework for visible light driven hydrogen evolution. Journal of Materials Chemistry A, 2016, 4, 18037-18042.	10.3	27
317	Ferrates(FeVI, FeV, and FeIV) oxidation of iodide: Formation of triiodide. Chemosphere, 2016, 144, 1156-1161.	8.2	27
318	Cyanographene and Graphene Acid: The Functional Group of Graphene Derivative Determines the Application in Electrochemical Sensing and Capacitors. ChemElectroChem, 2019, 6, 229-234.	3.4	27
319	Providing significantly enhanced photocatalytic H2 generation using porous PtPdAg alloy nanoparticles on spaced TiO2 nanotubes. International Journal of Hydrogen Energy, 2019, 44, 22962-22971.	7.1	27
320	Covalently Interlinked Graphene Sheets with Sulfurâ€Chains Enable Superior Lithium–Sulfur Battery Cathodes at Fullâ€Mass Level. Advanced Functional Materials, 2021, 31, 2101326.	14.9	27
321	Silver Covalently Bound to Cyanographene Overcomes Bacterial Resistance to Silver Nanoparticles and Antibiotics. Advanced Science, 2021, 8, 2003090.	11.2	27
322	Transparent and Low-Loss Luminescent Solar Concentrators Based on Self-Trapped Exciton Emission in Lead-Free Double Perovskite Nanocrystals. ACS Applied Energy Materials, 2021, 4, 6445-6453.	5.1	27
323	Mössbauer Characterization and in Situ Monitoring of Thermal Decomposition of Potassium Ferrate(VI), K2FeO4in Static Air Conditions. Journal of Physical Chemistry B, 2007, 111, 4280-4286.	2.6	26
324	Impact of inorganic buffering ions on the stability of Fe(<scp>vi</scp>) in aqueous solution: role of the carbonate ion. Physical Chemistry Chemical Physics, 2016, 18, 4415-4422.	2.8	26

#	Article	lF	CITATIONS
325	Molybdenum-promoted cobalt supported on SBA-15: Steam and sulfur dioxide stable catalyst for CO oxidation. Applied Catalysis B: Environmental, 2020, 277, 119248.	20.2	26
326	A multifunctional covalently linked graphene–MOF hybrid as an effective chemiresistive gas sensor. Journal of Materials Chemistry A, 2021, 9, 17434-17441.	10.3	26
327	Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	25
328	Formation of Zero-valent Iron Nanoparticles Mediated by Amino Acids. Procedia Environmental Sciences, 2013, 18, 809-817.	1.4	25
329	In situ crystallization of metallic glasses during magnetic field annealing. Acta Materialia, 2015, 91, 50-56.	7.9	25
330	High-valent iron (FeVI, FeV, and FeIV) species in water: characterization and oxidative transformation of estrogenic hormones. Physical Chemistry Chemical Physics, 2016, 18, 18802-18810.	2.8	25
331	Intrinsic photoluminescence of amine-functionalized graphene derivatives for bioimaging applications. Applied Materials Today, 2019, 17, 112-122.	4.3	25
332	Carboxylated Graphene for Radical-Assisted Ultra-Trace-Level Water Treatment and Noble Metal Recovery. ACS Nano, 2021, 15, 3349-3358.	14.6	25
333	Graphene Acid for Lithiumâ€lon Batteries—Carboxylation Boosts Storage Capacity in Graphene. Advanced Energy Materials, 2022, 12, .	19.5	25
334	Synthesis, X-ray and Mössbauer study of iron(II) complexes with trithiocyanuric acid (ttcH3). The X-ray structures of [Fe(bpy)3](ttcH)·2bpy÷7H2O and [Fe(phen)3](ttcH2)(ClO4)·2CH3OH·2H2O. Polyhedron, 200423, 2193-2202.	1,2.2	24
335	One-step solid state synthesis of capped Î ³ -Fe2O3nanocrystallites. Nanotechnology, 2008, 19, 095602.	2.6	24
336	Sonochemical Synthesis of Amorphous Yttrium Iron Oxides Embedded in Acetate Matrix and their Controlled Thermal Crystallization toward Garnet (Y ₃ Fe ₅ O ₁₂) and Perovskite (YFeO ₃) Nanostructures. Journal of Physical Chemistry C, 2010, 114, 13557-13564.	3.1	24
337	Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology, 2013, 24, 125102.	2.6	24
338	Pd@Pt Core–Shell Nanoparticles with Branched Dandelionâ€ike Morphology as Highly Efficient Catalysts for Olefin Reduction. Chemistry - A European Journal, 2016, 22, 1577-1581.	3.3	24
339	Ternary Hybrid γâ€Fe ₂ O ₃ /Cr ^{VI} /Amine Oxidase Nanostructure for Electrochemical Sensing: Application for Polyamine Detection in Tumor Tissue. Chemistry - A European Journal, 2016, 22, 6846-6852.	3.3	24
340	Highly efficient Cu-decorated iron oxide nanocatalyst for low pressure CO2 conversion. Applied Catalysis B: Environmental, 2018, 225, 128-138.	20.2	24
341	Solid phase extraction for the purification of violet, blue, green and yellow emitting carbon dots. Nanoscale, 2018, 10, 11293-11296.	5.6	24
342	Uncovering the Role of Trioctylphosphine on Colloidal and Emission Stability of Sb-Alloyed Cs ₂ NaInCl ₆ Double Perovskite Nanocrystals. ACS Applied Materials & Amp; Interfaces, 2021, 13, 47845-47859.	8.0	24

#	Article	IF	CITATIONS
343	Crystal chemistry and OH defect concentrations in spodumene from different granitic pegmatites. Physics and Chemistry of Minerals, 2006, 32, 733-746.	0.8	23
344	Sensitized chemiluminescence of luminol catalyzed by colloidal dispersions of nanometer-sized ferric oxides. Chemical Engineering Journal, 2008, 144, 483-488.	12.7	23
345	Optically Active Spherical Polyelectrolyte Brushes with a Nanocrystalline Magnetic Core. Advanced Functional Materials, 2008, 18, 1694-1706.	14.9	23
346	Transformation of Solid Potassium Ferrate(VI) (K ₂ FeO ₄): Mechanism and Kinetic Effect of Air Humidity. European Journal of Inorganic Chemistry, 2009, 2009, 1060-1067.	2.0	23
347	The first iron(III) complexes with cyclin-dependent kinase inhibitors: Magnetic, spectroscopic (IR, ES+) Tj ETQq1 1 Biochemistry, 2010, 104, 405-417.	0.784314 3.5	ł rgBT /Over 23
348	Tuning of the Critical Temperature in Iron(II) Spin-Crossover Materials Based on Bridging Polycyanidometallates: Pentacyanidonitrosylferrate(II) and Hexacyanidoplatinate(IV). Inorganic Chemistry, 2011, 50, 12390-12392.	4.0	23
349	Preparation, characterization and antimicrobial efficiency of Ag/PDDA-diatomite nanocomposite. Colloids and Surfaces B: Biointerfaces, 2013, 110, 191-198.	5.0	23
350	Hydrogenated Fluorographene: A 2D Counterpart of Graphane with Enhanced Nonlinear Optical Properties. Journal of Physical Chemistry C, 2017, 121, 22567-22575.	3.1	23
351	Alkynylation of graphene ⟨i⟩via⟨ i⟩ the Sonogashira C–C cross-coupling reaction on fluorographene. Chemical Communications, 2019, 55, 1088-1091.	4.1	23
352	Chloroplasts preferentially take up ferric–citrate over iron–nicotianamine complexes in Brassica napus. Planta, 2019, 249, 751-763.	3.2	23
353	SMALL BOWEL IMAGING - STILL A RADIOLOGIC APPROACH?. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2010, 154, 123-132.	0.6	23
354	Phase composition of steel–enamel interfaces: Effects of chemical pre-treatment. Surface and Coatings Technology, 2006, 201, 1836-1844.	4.8	22
355	AFM and Mössbauer spectrometry investigation of the nanocrystallization process in Fe–Mo–Cu–B rapidly quenched alloy. Journal of Physics Condensed Matter, 2007, 19, 216219.	1.8	22
356	Surface decoration of carbon nanosheets with amino-functionalized organosilica nanoparticles. Applied Surface Science, 2012, 258, 3703-3709.	6.1	22
357	Phosphorus and Halogen Coâ€Doped Graphene Materials and their Electrochemistry. Chemistry - A European Journal, 2016, 22, 15444-15450.	3.3	22
358	The environmental fate of graphene oxide in aquatic environmentâ€"Complete mitigation of its acute toxicity to planktonic and benthic crustaceans by algae. Journal of Hazardous Materials, 2020, 399, 123027.	12.4	22
359	Dualâ€Function HKUSTâ€1: Templating and Catalyzing Formation of Graphitic Carbon Nitride Quantum Dots Under Mild Conditions. Angewandte Chemie - International Edition, 2020, 59, 21499-21504.	13.8	22
360	Thermal decomposition of iron(VI) oxides, K2FeO4 and BaFeO4, in an inert atmosphere. Journal of Solid State Chemistry, 2006, 179, 1426-1433.	2.9	21

#	Article	IF	Citations
361	Reaction of graphite fluoride with NaOH–KOH eutectic. Journal of Fluorine Chemistry, 2008, 129, 720-724.	1.7	21
362	Polymorphous Exhibitions of Iron(III) Oxide during Isothermal Oxidative Decompositions of Iron Salts: A Key Role of the Powder Layer Thickness. Chemistry of Materials, 2008, 20, 5284-5295.	6.7	21
363	Low-Temperature Synthesis and Characterization of Gallium Nitride Quantum Dots in Ordered Mesoporous Silica. Journal of Physical Chemistry C, 2012, 116, 1185-1194.	3.1	21
364	Iron-Oxide-Supported Ultrasmall ZnO Nanoparticles: Applications for Transesterification, Amidation, and O-Acylation Reactions. ACS Sustainable Chemistry and Engineering, 2017, 5, 3314-3320.	6.7	21
365	Highly Conductive Waterâ€Based Polymer/Graphene Nanocomposites for Printed Electronics. Chemistry - A European Journal, 2017, 23, 8268-8274.	3.3	21
366	Selective Bromination of Graphene Oxide by the Hunsdiecker Reaction. Chemistry - A European Journal, 2017, 23, 10473-10479.	3.3	21
367	Sodium Chloride Protected CdHgTe Quantum Dot Based Solid-State Near-Infrared Luminophore for Light-Emitting Devices and Luminescence Thermometry. ACS Photonics, 2017, 4, 1459-1465.	6.6	21
368	Direct mapping of chemical oxidation of individual graphene sheets through dynamic force measurements at the nanoscale. Nanoscale, 2017, 9, 119-127.	5.6	21
369	Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. Water Research, 2019, 154, 361-369.	11.3	21
370	Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract. Chemical Papers, 2007, 61, .	2.2	20
371	Novel Ordered Mesoporous Carbon with Innate Functionalities and Superior Heavy Metal Uptake. Journal of Physical Chemistry C, 2013, 117, 16961-16971.	3.1	20
372	Magnetic ground state of nanosized \hat{l}^2 -Fe ₂ O ₃ and its remarkable electronic features. RSC Advances, 2015, 5, 49719-49727.	3.6	20
373	Calcium phosphate nanocapsule crowned multiwalled carbon nanotubes for pH triggered intracellular anticancer drug release. Journal of Materials Chemistry B, 2015, 3, 3931-3939.	5.8	20
374	Influence of various chloride ion concentrations on silver nanoparticle transformations and effectiveness in surface enhanced Raman scattering for different excitation wavelengths. RSC Advances, 2015, 5, 9737-9744.	3.6	20
375	A simple high-yield synthesis of high-purity HÃgg carbide (χ-Fe ₅ C ₂) nanoparticles with extraordinary electrochemical properties. Nanoscale, 2017, 9, 10440-10446.	5.6	20
376	Densely Functionalized Cyanographene Bypasses Aqueous Electrolytes and Synthetic Limitations Toward Seamless Graphene/βâ€FeOOH Hybrids for Supercapacitors. Advanced Functional Materials, 2019, 29, 1906998.	14.9	20
377	Self-assembly of chlorin-e6 on \hat{I}^3 -Fe2O3 nanoparticles: Application for larvicidal activity against Aedes aegypti. Journal of Photochemistry and Photobiology B: Biology, 2019, 194, 21-31.	3.8	20
378	N-Graphitic Modified Cobalt Nanoparticles Supported on Graphene for Tandem Dehydrogenation of Ammonia–Borane and Semihydrogenation of Alkynes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11058-11068.	6.7	20

#	Article	IF	Citations
379	Two-dimensional MOF-based liquid marbles: surface energy calculations and efficient oil–water separation using a ZIF-9-III@PVDF membrane. Journal of Materials Chemistry A, 2021, 9, 23651-23659.	10.3	20
380	Hydrothermal synthesis and electrochemical properties of tin titanate nanowires coupled with SnO2 nanoparticles for Li-ion batteries. CrystEngComm, 2014, 16, 7529-7535.	2.6	19
381	Synthesis of Polyvinylpyrrolidone-Stabilized Nonstoichiometric SnO2 Nanosheets with Exposed {101} Facets and Sn(II) Self-Doping as Anode Materials for Li-Ion Batteries. Electrochimica Acta, 2016, 211, 636-643.	5 . 2	19
382	Phyllosilicate nanoclay-based aqueous nanoparticle sorbent for CO2 capture at ambient conditions. Applied Materials Today, 2017, 9, 451-455.	4.3	19
383	Environmentally Benign Bioderived Carbon Microspheres-Supported Molybdena Nanoparticles as Catalyst for the Epoxidation Reaction. ACS Sustainable Chemistry and Engineering, 2017, 5, 904-910.	6.7	19
384	Zigzag sp ² Carbon Chains Passing through an sp ³ Framework: A Driving Force toward Room-Temperature Ferromagnetic Graphene. ACS Nano, 2018, 12, 12847-12859.	14.6	19
385	TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance. Catalysts, 2018, 8, 25.	3.5	19
386	On-surface structural and electronic properties of spontaneously formed Tb ₂ Pc ₃ single molecule magnets. Nanoscale, 2018, 10, 15553-15563.	5.6	19
387	Novel Fe@Fe-O@Ag nanocomposite for efficient non-enzymatic sensing of hydrogen peroxide. Electrochimica Acta, 2015, 153, 62-67.	5.2	18
388	Hexagonal Mesoporous Silicaâ€Supported Copper Oxide (CuO/HMS) Catalyst: Synthesis of Primary Amides from Aldehydes in Aqueous Medium. ChemPlusChem, 2017, 82, 467-473.	2.8	18
389	Pt nanoparticles decorated TiO2 nanotubes for the reduction of olefins. Applied Materials Today, 2018, 10, 86-92.	4.3	18
390	Label-free determination of prostate specific membrane antigen in human whole blood at nanomolar levels by magnetically assisted surface enhanced Raman spectroscopy. Analytica Chimica Acta, 2018, 997, 44-51.	5.4	18
391	Spin-Crossover Phenomenon in Microcrystals and Nanoparticles of a [Fe(2-mpz) ₂ Ni(CN) ₄] Two-Dimensional Hofmann-Type Polymer: A Detailed Nano-Topographic Study. Inorganic Chemistry, 2019, 58, 13733-13736.	4.0	18
392	Graphene with Covalently Grafted Amino Acid as a Route Toward Ecoâ€Friendly and Sustainable Supercapacitors. ChemSusChem, 2021, 14, 3904-3914.	6.8	18
393	Pd doped carbon nitride (Pd-g-C ₃ N ₄): an efficient photocatalyst for hydrogenation <i>via</i> an Al–H ₂ O system and an electrocatalyst towards overall water splitting. Green Chemistry, 2022, 24, 5535-5546.	9.0	18
394	Thermal decomposition of almandine garnet: Mössbauer study. European Physical Journal D, 2001, 51, 749-754.	0.4	17
395	Preparation of a water-dispersible carbon nanotube–silica hybrid. Carbon, 2007, 45, 2136-2139.	10.3	17
396	Low-temperature magnetic transition in troilite: A simple marker for highly stoichiometric FeS systems. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	17

#	Article	IF	CITATIONS
397	Crystal Water Molecules as Magnetic Tuners in Molecular Metamagnets Exhibiting Antiferro–Ferro–Paramagnetic Transitions. Inorganic Chemistry, 2011, 50, 9153-9163.	4.0	17
398	Tuning the Dispersibility of Carbon Nanostructures from Organophilic to Hydrophilic: Towards the Preparation of New Multipurpose Carbonâ€Based Hybrids. Chemistry - A European Journal, 2013, 19, 12884-12891.	3 . 3	17
399	A functionalized phosphonate-rich organosilica layered hybrid material (PSLM) fabricated through a mild process for heavy metal uptake. Journal of Hazardous Materials, 2014, 270, 118-126.	12.4	17
400	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Research on Chemical Intermediates, 2015, 41, 9333-9341.	2.7	17
401	Surface decoration of amine-rich carbon nitride with iron nanoparticles for arsenite (AsIII) uptake: The evolution of the Fe-phases under ambient conditions. Journal of Hazardous Materials, 2016, 312, 243-253.	12.4	17
402	Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Analytical Chemistry, 2017, 89, 6598-6607.	6.5	17
403	Conductive Cuâ€Doped TiO ₂ Nanotubes for Enhanced Photoelectrochemical Methanol Oxidation and Concomitant Hydrogen Generation. ChemElectroChem, 2019, 6, 1244-1249.	3.4	17
404	Pyrolytic formation and photoluminescence properties of a new layered carbonaceous material with graphite oxide-mimicking characteristics. Carbon, 2009, 47, 519-526.	10.3	16
405	Silver Voyage from Macro- to Nanoworld. Journal of Chemical Education, 2010, 87, 1094-1097.	2.3	16
406	Thermal decomposition of $[Co(en)3][Fe(CN)6]\hat{a}^{\text{TM}}$ 2H2O: Topotactic dehydration process, valence and spin exchange mechanism elucidation. Chemistry Central Journal, 2013, 7, 28.	2.6	16
407	Distribution of magnetic particulates in a roadside snowpack based on magnetic, microstructural and mineralogical analyses. Geophysical Journal International, 2013, 195, 159-175.	2.4	16
408	Biomimetische superhydrophobe/superoleophile hoch fluorierte Graphenoxidâ€ZIFâ€8â€Komposite fÃ⅓r die Ölâ€Wasserâ€Trennung. Angewandte Chemie, 2016, 128, 1193-1197.	2.0	16
409	Colloidal Surface Active Maghemite Nanoparticles for Biologically Safe Cr ^{VI} Remediation: from Coreâ€Shell Nanostructures to Pilot Plant Development. Chemistry - A European Journal, 2016, 22, 14219-14226.	3.3	16
410	Mössbauer spectrometer with resonant detector. Nuclear Instruments & Methods in Physics Research B, 2006, 243, 241-246.	1.4	15
411	[Co(en)3][Fe(CN)6]·H2O and [Co(en)3][Fe(CN)6]: A dehydration process investigated by single crystal X-ray analysis, thermal analysis and MA¶ssbauer spectroscopy. Polyhedron, 2006, 25, 2935-2943.	2.2	15
412	Direct synthesis of carbon nanosheets by the solid-state pyrolysis of betaine. Journal of Materials Science, 2009, 44, 1407-1411.	3.7	15
413	A Simple Potentiometric Titration Method to Determine Concentration of Ferrate(VI) in Strong Alkaline Solutions. Analytical Letters, 2011, 44, 1333-1340.	1.8	15
414	Greener iodination of arenes using sulphated ceria–zirconia catalysts in polyethylene glycol. RSC Advances, 2014, 4, 6267.	3.6	15

#	Article	IF	Citations
415	Graphene nanobuds: Synthesis and selective organic derivatisation. Carbon, 2016, 110, 51-55.	10.3	15
416	Electrocatalytic Nanostructured Ferric Tannates: Characterization and Application of a Polyphenol Nanosensor. ChemPhysChem, 2016, 17, 3196-3203.	2.1	15
417	Microwave Energy Drives "On–Off–On―Spinâ€5witch Behavior in Nitrogenâ€Doped Graphene. Advance Materials, 2019, 31, e1902587.	ed _{21.0}	15
418	Thermally reduced fluorographenes as efficient electrode materials for supercapacitors. Nanoscale, 2019, 11, 21364-21375.	5.6	15
419	Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal. Applied Sciences (Switzerland), 2020, 10, 8812.	2.5	15
420	The Existence of a Nâ†'C Dative Bond in the C ₆₀ â€"Piperidine Complex. Angewandte Chemie - International Edition, 2021, 60, 1942-1950.	13.8	15
421	Enhanced Onâ€Site Hydrogen Peroxide Electrosynthesis by a Selectively Carboxylated Nâ€Doped Graphene Catalyst. ChemCatChem, 2021, 13, 4372-4383.	3.7	15
422	Defect engineering over anisotropic brookite toward substrate-specific photo-oxidation of alcohols. Chem Catalysis, 2022, 2, 1177-1190.	6.1	15
423	The Role of Intermediates in the Process of Red Ferric Pigment Manufacture from FeSO4â‹7H2O. Hyperfine Interactions, 2002, 139/140, 437-445.	0.5	14
424	Title is missing!. Journal of Radioanalytical and Nuclear Chemistry, 2003, 255, 529-533.	1,5	14
425	Thermal behaviour of pyrope at 1000 and 1100 " $i_2 1/2$ C: mechanism of Fe2+ oxidation and decomposition model. Physics and Chemistry of Minerals, 2003, 30, 620-627.	0.8	14
426	Structural, magnetic and size transformations induced by isothermal treatment of ferrous oxalate dihydrate in static air conditions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3583-3588.	0.8	14
427	Enhancing Tumor Cell Response to Chemotherapy through the Targeted Delivery of Platinum Drugs Mediated by Highly Stable, Multifunctional Carboxymethylcelluloseâ€Coated Magnetic Nanoparticles. Chemistry - A European Journal, 2016, 22, 9750-9759.	3.3	14
428	Synthesis of silver nanoparticles by <i>Bacillus subtilis</i> Tâ€lÂgrowing on agroâ€industrial wastes and producing biosurfactant. IET Nanobiotechnology, 2016, 10, 62-68.	3.8	14
429	Iron based sustainable greener technologies to treat cyanobacteria and microcystin-LR in water. Water Science and Technology: Water Supply, 2017, 17, 107-114.	2.1	14
430	Hexagonal Mesoporous Silica Supported Ultrasmall Copper Oxides for Oxidative Amidation of Carboxylic Acids. ACS Sustainable Chemistry and Engineering, 2018, 6, 12935-12945.	6.7	14
431	Amorphous Mo–Ta Oxide Nanotubes for Long-Term Stable Mo Oxide-Based Supercapacitors. ACS Applied Materials & Diterfaces, 2019, 11, 45665-45673.	8.0	14
432	Thiophenolâ€Modified Fluorographene Derivatives for Nonlinear Optical Applications. ChemPlusChem, 2019, 84, 1288-1298.	2.8	14

#	Article	IF	Citations
433	Selective Functionalization Blended with Scaffold Conductivity in Graphene Acid Promotes H ₂ O ₂ Electrochemical Sensing. ACS Omega, 2019, 4, 19944-19952.	3.5	14
434	Pinning ultrasmall greigite nanoparticles on graphene for effective transition-metal-sulfide supercapacitors in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2020, 8, 25716-25726.	10.3	14
435	Convenient and Reusable Manganeseâ€Based Nanocatalyst for Amination of Alcohols. ChemCatChem, 2021, 13, 4334-4341.	3.7	14
436	The Mechanism of β-Fe2O3 Formation by Solid-State Reaction between NaCl and Fe2(SO4)3., 1999,, 49-56.		13
437	Magnetism of amorphous Fe2O3 nanopowders synthesized by solid-state reactions. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 3710-3716.	0.8	13
438	Magnetic microstructure of NANOPERM-type nanocrystalline alloys. Physica Status Solidi (B): Basic Research, 2006, 243, 57-64.	1.5	13
439	Novel iron complexes bearing N6-substituted adenosine derivatives: Synthesis, magnetic, 57Fe Mössbauer, DFT, and in vitro cytotoxicity studies. Bioorganic and Medicinal Chemistry, 2008, 16, 8719-8728.	3.0	13
440	Thermal decomposition of Prussian Blue microcrystals and nanocrystals – iron(iii) oxide polymorphism control through reactant particle size. RSC Advances, 2013, 3, 19591.	3.6	13
441	Nonlinear Optical Response of Gold-Decorated Nanodiamond Hybrids. Journal of Physical Chemistry C, 2015, 119, 24614-24620.	3.1	13
442	Synthesis and evaluation of condensed magnetic nanocrystal clusters with inÂvivo multispectral optoacoustic tomography for tumour targeting. Biomaterials, 2016, 91, 128-139.	11.4	13
443	Very thin thermally stable TiO2 blocking layers with enhanced electron transfer for solar cells. Applied Materials Today, 2017, 9, 122-129.	4.3	13
444	Transformations of ferrates(<scp>iv</scp> , <scp>v</scp> , <scp>vi</scp>) in liquids: Mössbauer spectroscopy of frozen solutions. Physical Chemistry Chemical Physics, 2018, 20, 30247-30256.	2.8	13
445	Carboxymethylcellulose-based magnetic Au or Ag nanosystems: Eminent candidates in catalysis, sensing applications based on SERS, and electrochemistry. Applied Materials Today, 2019, 14, 143-150.	4.3	13
446	Atomic-Scale Charge Distribution Mapping of Single Substitutional p- and n-Type Dopants in Graphene. ACS Sustainable Chemistry and Engineering, 2020, 8, 3437-3444.	6.7	13
447	Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29247-29256.	8.0	13
448	Mechanochemical synthesis of Cu ₂ S bonded 2D-sulfonated organic polymers: continuous production of dimethyl carbonate (DMC) <i>via</i> preheating of reactants. Green Chemistry, 2020, 22, 5619-5627.	9.0	13
449	Substitution effects of barium and calcium on magnetic properties of $AxSr1\hat{a}^{*}x$ (Fe0.5Ru0.5)O3 double perovskites (x=0.05, A=Ba,Ca). Journal of Applied Physics, 2007, 102, .	2.5	12
450	Speciation of Fe in Fe-modified zeolite catalysts. Journal of Electroanalytical Chemistry, 2010, 647, 8-19.	3.8	12

#	Article	IF	Citations
451	Pyrolytic formation of a carbonaceous solid for heavy metal adsorption. Journal of Materials Science, 2011, 46, 975-982.	3.7	12
452	Spin crossover behavior of a one-dimensional polymeric-chain compound $\{[Fe(abpt)2(\hat{l}_4-Ni(CN)4)]\hat{A}\cdot xH2O\}n (x=0.5\hat{a}_7'0): Synthesis, spectral, thermal and magnetic properties. Inorganica Chimica Acta, 2011, 365, 458-461.$	2.4	12
453	Spacerâ€free SERRS spectra of unperturbed porphyrin detected at 100 fM concentration in Ag hydrosols prepared by modified Tollens method. Journal of Raman Spectroscopy, 2012, 43, 689-691.	2.5	12
454	The non-innocent nature of graphene oxide as a theranostic platform for biomedical applications and its reactivity towards metal-based anticancer drugs. RSC Advances, 2015, 5, 76556-76566.	3.6	12
455	Microscale magnetic microparticleâ€based immunopurification of cytokinins from Arabidopsis root apex. Plant Journal, 2017, 89, 1065-1075.	5.7	12
456	RNA nanopatterning on graphene. 2D Materials, 2018, 5, 031006.	4.4	12
457	Thermal sulfidation of \hat{l} ±-Fe2O3 hematite to FeS2 pyrite thin electrodes: Correlation between surface morphology and photoelectrochemical functionality. Catalysis Today, 2018, 313, 224-230.	4.4	12
458	An Isolated Molecule of Iron(II) Phthalocyanin Exhibits Quintet Groundâ€State: A Nexus between Theory and Experiment. Chemistry - A European Journal, 2018, 24, 13413-13417.	3.3	12
459	Photocatalytic H ₂ Evolution: Dealloying as Efficient Tool for the Fabrication of Rhâ€decorated TiO ₂ Nanotubes. ChemCatChem, 2019, 11, 6258-6262.	3.7	12
460	Large Enhancement of the Nonlinear Optical Response of Fluorographene by Chemical Functionalization: The Case of Diethyl-amino-fluorographene. Journal of Physical Chemistry C, 2019, 123, 25856-25862.	3.1	12
461	Bimodal role of fluorine atoms in fluorographene chemistry opens a simple way toward double functionalization of graphene. Carbon, 2019, 145, 251-258.	10.3	12
462	Nitrogen-Doped Graphene Aerogel for Simultaneous Detection of Dopamine and Ascorbic Acid in Artificial Cerebrospinal Fluid. Journal of the Electrochemical Society, 2020, 167, 116521.	2.9	12
463	Copper(II) cyanido-bridged bimetallic nitroprusside-based complexes: Syntheses, X-ray structures, magnetic properties, 57Fe Mössbauer spectroscopy and thermal studies. Journal of Solid State Chemistry, 2010, 183, 1046-1054.	2.9	11
464	Fabrication of fluorescent nanodiamond@C coreâ€"shell hybrids via mild carbonization of sodium cholateâ€"nanodiamond complexes. Journal of Materials Science, 2011, 46, 7912-7916.	3.7	11
465	Iron(III) oxide polymorphs and their manifestations in in-field [sup 57]Fe Mol^ssbauer spectra. AIP Conference Proceedings, 2012, , .	0.4	11
466	$M\tilde{A}\P$ ssbauer investigation of the reaction of ferrate(VI) with sulfamethoxazole and aniline in alkaline medium. Hyperfine Interactions, 2014, 224, 7-13.	0.5	11
467	Remarkable enhancement of the electrical conductivity of carbon nanostructured thin films after compression. Nanoscale, 2016, 8, 11413-11417.	5.6	11
468	Revisiting the iron pools in cucumber roots: identification and localization. Planta, 2016, 244, 167-179.	3.2	11

#	Article	IF	Citations
469	Highly efficient silver particle layers on glass substrate synthesized by the sonochemical method for surface enhanced Raman spectroscopy purposes. Ultrasonics Sonochemistry, 2016, 32, 165-172.	8.2	11
470	Steric and Electronic Effects of Phosphane Additives on the Catalytic Performance of Colloidal Palladium Nanoparticles in the Semiâ∈Hydrogenation of Alkynes. ChemCatChem, 2021, 13, 227-234.	3.7	11
471	Solid-state synthesis of $\hat{l}\pm$ -Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3. Hyperfine Interactions, 2009, 189, 167-173.	0.5	10
472	Low-temperature magnetic properties of iron-bearing sulfides and their contribution to magnetism of cometary bodies. Icarus, 2010, 208, 955-962.	2.5	10
473	The effect of surface modification on the fluorescence and morphology of CdSe nanoparticles embedded in a 3D phosphazene-based matrix: nanowire-like quantum dots. Journal of Materials Chemistry, 2011, 21, 1086-1093.	6.7	10
474	Carbon-dot organic surface modifier analysis by solution-state NMR spectroscopy. Journal of Nanoparticle Research, 2013, 15 , 1 .	1.9	10
475	Ferryl and Ferrate Species: Mössbauer Spectroscopy Investigation. Croatica Chemica Acta, 2015, 88, 363-368.	0.4	10
476	Challenges in the Structure Determination of Self-Assembled Metallacages: What Do Cage Cavities Contain, Internal Vapor Bubbles or Solvent and/or Counterions?. Journal of the American Chemical Society, 2016, 138, 6676-6687.	13.7	10
477	Fullerol–graphene nanobuds: Novel water dispersible and highly conductive nanocarbon for electrochemical sensing. Applied Materials Today, 2017, 9, 71-76.	4.3	10
478	Crystal Structure―and Morphologyâ€Driven Electrochemistry of Iron Oxide Nanoparticles in Hydrogen Peroxide Detection. Advanced Materials Interfaces, 2019, 6, 1801549.	3.7	10
479	Multiplex competitive analysis of HER2 and EpCAM cancer markers in whole human blood using Fe2O3@Ag nanocomposite. Applied Materials Today, 2018, 13, 166-173.	4.3	10
480	Culture medium mediated aggregation and re-crystallization of silver nanoparticles reduce their toxicity. Applied Materials Today, 2018, 12, 198-206.	4.3	10
481	Biologically safe colloidal suspensions of naked iron oxide nanoparticles for in situ antibiotic suppression. Colloids and Surfaces B: Biointerfaces, 2019, 181, 102-111.	5.0	10
482	Fe2O3 Blocking Layer Produced by Cyclic Voltammetry Leads to Improved Photoelectrochemical Performance of Hematite Nanorods. Surfaces, 2019, 2, 131-144.	2.3	10
483	Enhancing Photoelectrochemical Energy Storage by Large-Area CdS-Coated Nickel Nanoantenna Arrays. ACS Applied Energy Materials, 2021, 4, 11367-11376.	5.1	10
484	Fe ₃ O ₄ Nanocrystals Tune the Magnetic Regime of the Fe/Ni Molecular Magnet: A New Class of Magnetic Superstructures. Inorganic Chemistry, 2013, 52, 8144-8150.	4.0	9
485	Mixtures of l-Amino Acids as Reaction Medium for Formation of Iron Nanoparticles: The Order of Addition into a Ferrous Salt Solution Matters. International Journal of Molecular Sciences, 2013, 14, 19452-19473.	4.1	9
486	Magnetically-modified natural biogenic iron oxides for organic xenobiotics removal. International Journal of Environmental Science and Technology, 2015, 12, 673-682.	3.5	9

#	Article	IF	Citations
487	Triggering Two-Step Spin Bistability and Large Hysteresis in Spin Crossover Nanoparticles via Molecular Nanoengineering. Chemistry of Materials, 2017, 29, 8875-8883.	6.7	9
488	Carbon Dots: Nearâ€Infrared Excitation/Emission and Multiphotonâ€Induced Fluorescence of Carbon Dots (Adv. Mater. 13/2018). Advanced Materials, 2018, 30, 1870092.	21.0	9
489	Imaging of growth factors on a human tooth root canal by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry, 2018, 410, 7113-7120.	3.7	9
490	Biotechnological applications of nanostructured hybrids of polyamine carbon quantum dots and iron oxide nanoparticles. Amino Acids, 2020, 52, 301-311.	2.7	9
491	Colloidal maghemite nanoparticles with oxyhydroxide-like interface and chiroptical properties. Applied Surface Science, 2020, 534, 147567.	6.1	9
492	Pressure-Modulated Broadband Emission in 2D Layered Hybrid Perovskite-Like Bromoplumbate. Inorganic Chemistry, 2020, 59, 12431-12436.	4.0	9
493	Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts, 2020, 10, 717.	3.5	9
494	Structure-directed formation of the dative/covalent bonds in complexes with C ₇₀ âcpiperidine. Physical Chemistry Chemical Physics, 2021, 23, 4365-4375.	2.8	9
495	Mössbauer Spectroscopy in Study of Thermally Induced Crystallization of Amorphous Fe ₂ O ₃ Nanoparticles. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 641-647.	0.1	8
496	A new fast type of $M\tilde{A}_{S}$ ssbauer spectrometer for the rapid determination of iron-bearing minerals used in the paint industry. European Physical Journal D, 2005, 55, 803-811.	0.4	8
497	Zero-field and in-field Mössbauer spectroscopy as a tool for structural and magnetic characterization of maghemite (γ-Fe2O3) nanoparticles. European Physical Journal D, 2005, 55, 893-911.	0.4	8
498	Decomposition of Potassium Ferrate(VI) (K[sub 2]FeO[sub 4]) and Potassium Ferrate(III) (KFeO[sub 2]): In-situ Mol^ssbauer Spectroscopy Approach. , 2008, , .		8
499	Thermally-induced solid state transformation of βâ€Fe2O3 nanoparticles in various atmospheres. AIP Conference Proceedings, 2014, , .	0.4	8
500	Accurate determination of silver nanoparticles in animal tissues by inductively coupled plasma mass spectrometry. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 102, 7-11.	2.9	8
501	Highly dispersible disk-like graphene nanoflakes. Nanoscale, 2015, 7, 15059-15064.	5.6	8
502	Role of ion bombardment, film thickness and temperature of annealing on PEC activity of very-thin film hematite photoanodes deposited by advanced magnetron sputtering. International Journal of Hydrogen Energy, 2016, 41, 11547-11557.	7.1	8
503	Online stacking of carboxylated magnetite core–shell nanoparticles in capillary electrophoresis. Journal of Separation Science, 2017, 40, 2482-2487.	2.5	8
504	Noncovalent Grafting of a Dy ^{III} ₂ Single-Molecule Magnet onto Chemically Modified Multiwalled Carbon Nanotubes. Inorganic Chemistry, 2018, 57, 6391-6400.	4.0	8

#	Article	IF	Citations
505	Singleâ€Atom Catalysis: Mixedâ€Valence Singleâ€Atom Catalyst Derived from Functionalized Graphene (Adv.) Tj	ETQq1 1 (21.0	0.7 <mark>8</mark> 4314 rg
506	Smart synthetic maghemite nanoparticles with unique surface properties encode binding specificity toward AsIII. Science of the Total Environment, 2020, 741, 140175.	8.0	8
507	<i>In situ</i> coating amorphous boride on ternary pyrite-type boron sulfide for highly efficient oxygen evolution. Journal of Materials Chemistry A, 2021, 9, 12283-12290.	10.3	8
508	Asymmetric Supercapacitors: Covalent Grapheneâ€MOF Hybrids for Highâ€Performance Asymmetric Supercapacitors (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170028.	21.0	8
509	Ultrafine TiO ₂ Nanoparticle Supported Nitrogenâ€Rich Graphitic Porous Carbon as an Efficient Anode Material for Potassiumâ€ion Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100042.	5.8	8
510	Non-chemical approach toward 2D self-assemblies of Ag nanoparticles via cold plasma treatment of substrates. Nanotechnology, 2011, 22, 275601.	2.6	7
511	Aqueous-dispersible fullerol-carbon nanotube hybrids. Materials Letters, 2012, 82, 48-50.	2.6	7
512	A water-dispersible, carboxylate-rich carbonaceous solid: synthesis, heavy metal uptake and EPR study. Journal of Materials Science, 2012, 47, 3140-3149.	3.7	7
513	Magnetic Bimetallic Fe/Ag Nanoparticles: Decontamination and Antimicrobial Agents. ACS Symposium Series, 2013, , 193-209.	0.5	7
514	Study of behavior of carboxylic magnetite core shell nanoparticles on a pH boundary. Journal of Chromatography A, 2014, 1364, 59-63.	3.7	7
515	Magnetite (Ferrites)-Supported Nano-Catalysts: Sustainable Applications in Organic Transformations. ACS Symposium Series, 2016, , 39-78.	0.5	7
516	Evidence for ferritin as dominant iron-bearing species in the rhizobacterium Azospirillum brasilense Sp7 provided by low-temperature/in-field MA¶ssbauer spectroscopy. Analytical and Bioanalytical Chemistry, 2016, 408, 1565-1571.	3.7	7
517	Nanoscale Assembly of BiVO4/CdS/CoOx Core–Shell Heterojunction for Enhanced Photoelectrochemical Water Splitting. Catalysts, 2021, 11, 682.	3.5	7
518	Zero-Valent Iron Nanoparticles with Unique Spherical 3D Architectures Encode Superior Efficiency in Copper Entrapment. ACS Sustainable Chemistry and Engineering, 2016, 4, 2748-2753.	6.7	7
519	Magnetic resonance cholangiopancreatography (MRCP) using new negative per-oral contrast agent based on superparamagnetic iron oxide nanoparticles for extrahepatic biliary duct visualization in liver cirrhosis. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc. Czechoslovakia. 2016. 160. 512-517.	0.6	7
520	Developing Benign Ni/g-C ₃ N ₄ Catalysts for CO ₂ Hydrogenation: Activity and Toxicity Study. Industrial & Engineering Chemistry Research, 2022, 61, 10496-10510.	3.7	7
521	Nanocrystalline Iron(III) Oxides Formed under Dynamic Heating of Ferrous Oxalate Dihydrate in Air. AIP Conference Proceedings, 2005, , .	0.4	6
522	Surface properties of Fe76Mo8Cu1B15 alloy after annealing. Hyperfine Interactions, 2007, 165, 75-80.	0.5	6

#	Article	IF	CITATIONS
523	Preparation of silver particles and its application for surface enhanced Raman scattering with near-infrared excitation. Materials Research Bulletin, 2014, 50, 63-67.	5.2	6
524	Advances Made in Understanding the Interaction of Ferrate(VI) with Natural Organic Matter in Water. , 2014, , 183-197.		6
525	Unusual magnetic damping effect in a silver–cobalt ferrite hetero nano-system. RSC Advances, 2015, 5, 17117-17122.	3.6	6
526	Hierarchical Porous Graphene–Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal–Organic Gel as Efficient Electrochemical Dopamine Sensor. Frontiers in Chemistry, 2020, 8, 544.	3.6	6
527	Dualâ€Function HKUSTâ€1: Templating and Catalyzing Formation of Graphitic Carbon Nitride Quantum Dots Under Mild Conditions. Angewandte Chemie, 2020, 132, 21683-21688.	2.0	6
528	Addition Reaction between Piperidine and C ₆₀ to Form 1,4-Disubstituted C ₆₀ Proceeds through van der Waals and Dative Bond Complexes: Theoretical and Experimental Study. Journal of the American Chemical Society, 2021, 143, 10930-10939.	13.7	6
529	Toxicity of Carbon Nanomaterialsâ€"Towards Reliable Viability Assessment via New Approach in Flow Cytometry. International Journal of Molecular Sciences, 2021, 22, 7750.	4.1	6
530	Potassium Ferrite (KFeO ₂): Synthesis, Decomposition, and Application for Removal of Metals. Science of Advanced Materials, 2015, 7, 579-587.	0.7	6
531	Photocatalytic Synthesis of Oxidized Graphite Enabled by Grey TiO ₂ and Direct Formation of a Visibleâ€Lightâ€Active Titania/Graphene Oxide Nanocomposite. ChemPhotoChem, 2022, 6, .	3.0	6
532	Graphene Nanobeacons with Highâ€Affinity Pockets for Combined, Selective, and Effective Decontamination and Reagentless Detection of Heavy Metals. Small, 2022, 18, .	10.0	6
533	Mechanism of solid-state oxidation of FeSO4·H2O: model of simultaneous reactions. European Physical Journal D, 2001, 51, 719-726.	0.4	5
534	Mössbauer Spectrometer with Novel Moving System and Resonant Detection of Gamma Rays. Hyperfine Interactions, 2004, 156/157, 15-19.	0.5	5
535	Characterization and Thermal Behaviour of Garnets from Almandine–Pyrope Series at 1200°C. Hyperfine Interactions, 2004, 156/157, 403-410.	0.5	5
536	Synthesis, X-ray and Mössbauer study of iron(II) complexes with trithiocyanuric acid (ttcH3) Polyhedron, 2004, 23, 2193-2202.	2.2	5
537	Nanocrystalline Fe–Ni and Fe–Co samples prepared by powder processing. Journal of Magnetism and Magnetic Materials, 2007, 310, e858-e860.	2.3	5
538	Easy deposition of amorphous carbon films on glass substrates. Carbon, 2008, 46, 1801-1804.	10.3	5
539	Thermal Stability of Solid Ferrates(VI): A Review. ACS Symposium Series, 2008, , 124-144.	0.5	5
540	Macromol. Mater. Eng. 2/2010. Macromolecular Materials and Engineering, 2010, 295, 91-94.	3.6	5

#	Article	IF	Citations
541	The preparation of magnetically guided lipid based nanoemulsions using self-emulsifying technology. Nanotechnology, 2010, 21, 055104.	2.6	5
542	Determination of submillimolar concentration of ferrate(VI) in alkaline solutions by amperometric titration. Open Chemistry, 2011, 9, 808-812.	1.9	5
543	Thermal behavior of almandine at temperatures up to 1,200°C in hydrogen. Physics and Chemistry of Minerals, 2012, 39, 311-318.	0.8	5
544	Ferromagnetism: Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism (Adv. Mater. 25/2016). Advanced Materials, 2016, 28, 5139-5139.	21.0	5
545	Development of novel FePt/nanodiamond hybrid nanostructures: L10 phase size-growth suppression and magnetic properties. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	5
546	Electrostatically stabilized hybrids of carbon and maghemite nanoparticles: electrochemical study and application. Physical Chemistry Chemical Physics, 2017, 19, 11668-11677.	2.8	5
547	Morphologyâ€Dependent Magnetism in Nanographene: Beyond Nanoribbons. Advanced Functional Materials, 2018, 28, 1800592.	14.9	5
548	Spaced Titania Nanotube Arrays Allow the Construction of an Efficient Nâ€Doped Hierarchical Structure for Visibleâ€Light Harvesting. ChemistryOpen, 2018, 7, 131-135.	1.9	5
549	Spin Crossover in Iron(II) Porphyrazine Induced by Noncovalent Interactions Combined with Hybridization of Iron(II) Porphyrazine and Ligand's Orbitals: CASPT2, CCSD(T), and DFT Studies. Journal of Physical Chemistry C, 2019, 123, 23186-23194.	3.1	5
550	Polypyrrole and Carbon Nanotube Coâ€Composited Titania Anodes with Enhanced Sodium Storage Performance in Etherâ€Based Electrolyte. Advanced Sustainable Systems, 2019, 3, 1800154.	5.3	5
551	Nanoscale Zerovalent Iron Particles for Treatment of Metalloids. , 2019, , 157-199.		5
552	Peptide nucleic acid stabilized perovskite nanoparticles for nucleic acid sensing. Materials Today Chemistry, 2020, 17, 100272.	3.5	5
553	Environmental implications of one-century COPRs evolution in a single industrial site: From leaching impact to sustainable remediation of CrVI polluted groundwater. Chemosphere, 2021, 283, 131211.	8.2	5
554	Iron(III) Oxides Formed During Thermal Conversion of Rhombohedral Iron(III) Sulfate., 2003,, 21-30.		5
555	Fluoro-graphene: nonlinear optical properties. Optics Express, 2013, 21, 21028.	3.4	5
556	Mössbauer study of thermal conversion of FeSO4·7H2O. European Physical Journal D, 1997, 47, 565-569.	0.4	4
557	Influence of composition on hyperfine interactions in FeMoCuB nanocrystalline alloy. European Physical Journal D, 2006, 56, E63-E74.	0.4	4
558	Single ferromagnetic behaviour of nanopowders with. Journal of Magnetism and Magnetic Materials, 2006, 304, e787-e789.	2.3	4

#	Article	IF	CITATIONS
559	Magnetic and structural features of amorphous FeMo-based alloys. Journal of Magnetism and Magnetic Materials, 2007, 316, e16-e19.	2.3	4
560	Cornet‣ike Phosphotriazine/Diamine Polymers as Reductant and Matrix for the Synthesis of Silver Nanocomposites with Antimicrobial Activity. Macromolecular Materials and Engineering, 2010, 295, 108-114.	3.6	4
561	Laser-induced transformations of zero-valent iron particles. , 2012, , .		4
562	Moî ssbauer study and magnetic measurement of troilite extract from natan iron meteorite., 2012,,.		4
563	Ferrate(VI): A Green Chemistry Oxidant for Removal of Antibiotics in Water. ACS Symposium Series, 2013, , 31-44.	0.5	4
564	HCl Effect on Two Types of Ag Nanoparticles Utilizable in Detection of Low Concentrations of Organic Species. ACS Symposium Series, 2013, , 151-163.	0.5	4
565	Ferromagnetic Coupling in an Fe[C(SiMe ₃) ₃] ₂ /Ferrihydrite Heteroâ€Mixture Molecular Magnet. European Journal of Inorganic Chemistry, 2014, 2014, 3178-3183.	2.0	4
566	Graphene: Thiofluorographene–Hydrophilic Graphene Derivative with Semiconducting and Genosensing Properties (Adv. Mater. 14/2015). Advanced Materials, 2015, 27, 2407-2407.	21.0	4
567	Silver Nanoparticles in Natural Environment: Formation, Fate, and Toxicity. Nanomedicine and Nanotoxicology, 2017, , 239-258.	0.2	4
568	Nano-immobilized flumequine with preserved antibacterial efficacy. Colloids and Surfaces B: Biointerfaces, 2020, 191, 111019.	5.0	4
569	Controlling phase fraction and crystal orientation via thermal oxidation of iron foils for enhanced photoelectrochemical performance. Catalysis Today, 2021, 361, 117-123.	4.4	4
570	The Existence of a N→C Dative Bond in the C 60 –Piperidine Complex. Angewandte Chemie, 2021, 133, 1970-1978.	2.0	4
571	Graphene oxide interaction with Lemna minor: Root barrier strong enough to prevent nanoblade-morphology-induced toxicity. Chemosphere, 2022, 291, 132739.	8.2	4
572	Robust dual cationic ligand for stable and efficient warm-white light emission in lead-free double perovskite nanocrystals. Applied Materials Today, 2022, 26, 101288.	4.3	4
573	Influence of enamel ageing on mechanical properties and phase composition of the steel–enamel system. Surface and Interface Analysis, 2006, 38, 413-416.	1.8	3
574	Evolution of structural changes in nanocrystalline alloys with temperature. Physics of Metals and Metallography, 2007, 104, 335-345.	1.0	3
575	Mol̀ ssbauer and Magnetic Studies of Nanocrystalline Iron, Iron Oxide and Iron Carbide Powders Prepared from Synthetic Ferrihydrite. , 2008, , .		3
576	Moì^ssbauer Study and Macroscopicâ^•Global Magnetic Behavior of Powdered Ilmenite (FeTiO[sub 3]) Sample., 2010,,.		3

#	Article	IF	Citations
577	Mechanism of oxidation of cysteine and methionine by ferrate(VI): Moì ssbauer investigation., 2012,,.		3
578	Base-free Transfer Hydrogenation of Nitroarenes Catalyzed by Micro-mesoporous Iron Oxide. ChemCatChem, 2016, 8, 2298-2298.	3.7	3
579	H2O2Tolerance inPseudomonas Fluorescens: Synergy between Pyoverdineâ€ŀron(III) Complex and a Blue Extracellular Product Revealed by a Nanotechnologyâ€Based Electrochemical Approach. ChemElectroChem, 2019, 6, 5186-5190.	3.4	3
580	Tracing of iron nanoparticles using an elemental signatures approach: laboratory and field-scale verification. Environmental Science: Nano, 2020, 7, 623-633.	4.3	3
581	MR enterography with a new negative oral contrast solution containing maghemite nanoparticles. Biomedical Papers of the Medical Faculty of the University Palacký, Olomouc, Czechoslovakia, 2012, 156, 229-235.	0.6	3
582	Preparation and Properties of Iron and Iron Oxide Nanocrystals in MgO Matrix. Hyperfine Interactions, 2006, 164, 35-40.	0.5	2
583	Preparation of a water-dispersible carbon–silica composite derived from a silylated molecular precursor. Carbon, 2007, 45, 1108-1111.	10.3	2
584	Mössbauer study of iron oxide modified montmorillonite. Hyperfine Interactions, 2007, 165, 221-225.	0.5	2
585	Electric field gradient in FeTiO ₃ by nuclear magnetic resonance and <i>ab initio</i> calculations. Journal of Physics Condensed Matter, 2011, 23, 205503.	1.8	2
586	Low-temperature magnetism of alabandite: Crucial role of surface oxidation. American Mineralogist, 2013, 98, 1550-1556.	1.9	2
587	Magnetic properties of anion-radical salt [FeII(dipy)3](TCNQ)4·(CH3)2CO. Synthetic Metals, 2014, 194, 7-10.	3.9	2
588	Fluorographene: Dichlorocarbene-Functionalized Fluorographene: Synthesis and Reaction Mechanism (Small 31/2015). Small, 2015, 11, 3789-3789.	10.0	2
589	Hsp70 as an indicator of stress in the cells after contact with nanoparticles. Journal of Physics: Conference Series, 2015, 617, 012023.	0.4	2
590	Nanothermometry: Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry (Small 4/2016). Small, 2016, 12, 548-548.	10.0	2
591	Enhancing Magnetic Cooperativity in Fe(II) Triazoleâ€based Spinâ€crossover Nanoparticles by Pluronic Matrix Confinement. Chemistry - an Asian Journal, 2020, 15, 2637-2641.	3.3	2
592	Characterization and Thermal Behaviour of Garnets from Almandineâ€"Pyrope Series at 1200°C. , 2004, , 403-410.		2
593	The Role of Intermediates in the Process of Red Ferric Pigment Manufacture from FeSO4·7H2O. , 2002, , 437-445.		2
594	Support Morphology-dependent Activity of Nanocatalysts. RSC Catalysis Series, 2019, , 84-114.	0.1	2

#	Article	IF	CITATIONS
595	Magnetic Interactions between Nanoparticles Formed during Calcination of Ferrihydrite. Acta Physica Polonica A, 2010, 118, 749-750.	0.5	2
596	Magnetite $\hat{a} \in \mathbb{R}$ ree Snâ \in doped hematite nanoflake layers for enhanced photoelectrochemical water splitting. Chem Electro Chem, 0, , .	3.4	2
597	MöSsbauer Spectroscopy in Studying the Thermally Induced Oxidation of Fe2+ Cations in Iron-Bearing Silicate Minerals., 2003,, 271-284.		1
598	Mol^ssbauer Spectrometer in the PXI/CompactPCI Modular System. AIP Conference Proceedings, 2005, , .	0.4	1
599	Properties of iron nanoparticles sealed in protective media. Journal of Physics: Conference Series, 2010, 217, 012104.	0.4	1
600	Preparation and Properties of FeCo Nanoparticles. , 2010, , .		1
601	Iron nanoparticles prepared from natural ferrihydrite precursors: kinetics and properties. Journal of Nanoparticle Research, 2011, 13, 5677-5684.	1.9	1
602	In-field 57Fe MÃ \P ssbauer spectroscopy below spin-flop transition in powdered troilite (FeS) mineral. , 2014, , .		1
603	Magnetic interaction in oxygenated alpha Fe-phthalocyanines. , 2014, , .		1
604	Ferrate(VI): A Green Molecule in Odorous Gas Treatment. ACS Symposium Series, 2014, , 193-207.	0.5	1
605	Controlled Solid-State Synthesis of Mri Effective Superparamagnetic Maghemite Nanoparticles from Iron(II) Acetate. Biophysical Journal, 2014, 106, 624a-625a.	0.5	1
606	Surfactant-Based Fluorescent Quantum Carbon Dots: Synthesis and Application. Advanced Materials Research, 2015, 1088, 381-385.	0.3	1
607	Directly grown TiO2 nanotubes on carbon nanofibers for photoelectrochemical water splitting. MRS Advances, 2016, 1, 3145-3150.	0.9	1
608	2D Metal-Organic Frameworks: Ultrathin 2D Cobalt Zeolite-Imidazole Framework Nanosheets for Electrocatalytic Oxygen Evolution (Adv. Sci. 11/2018). Advanced Science, 2018, 5, 1870072.	11.2	1
609	MHP@MOF Hybrids: Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications (Small 47/2020). Small, 2020, 16, 2070258.	10.0	1
610	Nanometallurgy in solution: organometallic synthesis of intermetallic Pd–Ga colloids and their activity in semi-hydrogenation catalysis. Nanoscale, 2021, 13, 15038-15047.	5.6	1
611	Solid-state synthesis of \hat{l}_{\pm} -Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3. , 2009, , 167-173.		1
612	Quantitative analysis of poorly crystalline Fe2O3specimens. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c389-c389.	0.3	1

#	Article	IF	Citations
613	The Role of Atomic Force Microscopy in Nanoparticle Research. Journal of Advanced Microscopy Research, 2010, 5, 67-77.	0.3	1
614	Mol^ssbauer Study of (Ca,Sr)RuO3 Doped with 57Fe. AIP Conference Proceedings, 2005, , .	0.4	0
615	Thermal Transformations of Iron Cations in the System Metal-Vitreous Enamel Coat. Mol^ssbauer Spectroscopic Study. AIP Conference Proceedings, 2005, , .	0.4	0
616	Preparation and Properties of Iron and Iron Oxide Nanocrystals in MgO Matrix., 2006,, 35-40.		0
617	Moì^ssbauer Effect Study of Iron Thin Films on Siâ^•SiO[sub x] Substrate and Iron Phases at Deposited Carbon Nanotubes., 2010,,.		0
618	Thermally induced solid-state route toward magnetite nanoparticles with controlled stoichiometry. , 2012, , .		0
619	Real-Time Imaging of SPION Modified Stem Cells. Biophysical Journal, 2013, 104, 674a.	0.5	0
620	The influence of the iron content on the reductive decomposition of A3â^'xFexAl2Si3O12 garnets (A =) Tj ETQq0	0 0 rgBT /	Overlock 10
621	Antibody - Conjugated Superparamagnetic Iron Oxide Nanoparticles for Active Targeting of Adenosine Receptors. Biophysical Journal, 2014, 106, 419a.	0.5	0
622	Effect of Noble Metal Nanoparticles in SERRS Measurements of Water-Soluble Porphyrins. Advanced Materials Research, 2015, 1088, 43-47.	0.3	0
623	DNA Conductivity: Triggering Mechanism for DNA Electrical Conductivity: Reversible Electron Transfer between DNA and Iron Oxide Nanoparticles (Adv. Funct. Mater. 12/2015). Advanced Functional Materials, 2015, 25, 1821-1821.	14.9	0
624	Thermal decomposition of ammonium ferrocyanide, (NH4)4[Fe(CN)6], in air. AIP Conference Proceedings, 2016, , .	0.4	0
625	Chemical Sensing: Incorporating Copper Nanoclusters into Metalâ€Organic Frameworks: Confinementâ€Assisted Emission Enhancement and Application for Trinitrotoluene Detection (Part.) Tj ETQq1 1	0. 7283 1314	rg & T /Over
626	Label-free determination and multiplex analysis of DNA and RNA in tumor tissues. Applied Materials Today, 2018, 12, 85-91.	4.3	0
627	Graphene: High-Performance Supercapacitors Based on a Zwitterionic Network of Covalently Functionalized Graphene with Iron Tetraaminophthalocyanine (Adv. Funct. Mater. 29/2018). Advanced Functional Materials, 2018, 28, 1870203.	14.9	0
628	Graphene: Morphology-Dependent Magnetism in Nanographene: Beyond Nanoribbons (Adv. Funct.) Tj ETQq0 0 (O rgBT /Ov	erlock 10 Tf 5
629	H ₂ O ₂ Tolerance in <i>Pseudomonas Fluorescens</i> : Synergy between Pyoverdineâ€Iron(III) Complex and a Blue Extracellular Product Revealed by a Nanotechnologyâ€Based Electrochemical Approach. ChemElectroChem, 2019, 6, 5166-5166.	3.4	0
630	US–Czech conference strengthens bilateral and multidisciplinary collaborations in nanotechnology and chemistry. Nanotechnology, 2019, 30, 052501.	2.6	0

#	Article	IF	CITATIONS
631	Study of Penetration Kinetics of Sodium Hydroxide Aqueous Solution into Wood Samples. BioResources, 2013, 9, .	1.0	0
632	Mössbauer study of iron oxide modified montmorillonite. , 2006, , 221-225.		0
633	Carbon Nanotube Based Metal–Organic Framework Hybrids From Fundamentals Toward Applications (Small 4/2022). Small, 2022, 18, .	10.0	0