
Yordan M Georgiev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3902307/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mid- and far-infrared localized surface plasmon resonances in chalcogen-hyperdoped silicon. Nanoscale, 2022, 14, 2826-2836.	2.8	9
2	Electrical Characterization of Germanium Nanowires Using a Symmetric Hall Bar Configuration: Size and Shape Dependence. Nanomaterials, 2021, 11, 2917.	1.9	5
3	Controlled Silicidation of Silicon Nanowires Using Flash Lamp Annealing. Langmuir, 2021, , .	1.6	4
4	Formation and crystallographic orientation of NiSi2–Si interfaces. Journal of Applied Physics, 2020, 128, 085301.	1.1	7
5	Resonant tunneling and hole transport behavior in low noise silicon tri-gate junctionless single hole transistor. Semiconductor Science and Technology, 2020, 35, 065011.	1.0	1
6	Ultrahigh Negative Infrared Photoconductance in Highly As-Doped Germanium Nanowires Induced by Hot Electron Trapping. ACS Applied Electronic Materials, 2020, 2, 1934-1942.	2.0	8
7	Towards Scalable Reconfigurable Field Effect Transistor using Flash Lamp Annealing. , 2020, , .		2
8	Nanoscale n++-p junction formation in GeOI probed by tip-enhanced Raman spectroscopy and conductive atomic force microscopy. Journal of Applied Physics, 2019, 125, 245703.	1.1	5
9	Towards Reconfigurable Electronics: Silicidation of Top-Down Fabricated Silicon Nanowires. Applied Sciences (Switzerland), 2019, 9, 3462.	1.3	16
10	Detection of ultra-low protein concentrations with the simplest possible field effect transistor. Nanotechnology, 2019, 30, 324001.	1.3	12
11	CMOSâ€Compatible Controlled Hyperdoping of Silicon Nanowires. Advanced Materials Interfaces, 2018, 5, 1800101.	1.9	11
12	Observation of Ultrafast Solid-Density Plasma Dynamics Using Femtosecond X-Ray Pulses from a Free-Electron Laser. Physical Review X, 2018, 8, .	2.8	21
13	Formation of n- and p-type regions in individual Si/SiO ₂ core/shell nanowires by ion beam doping. Nanotechnology, 2018, 29, 474001.	1.3	6
14	Fabrication of Si and Ge nanoarrays through graphoepitaxial directed hardmask block copolymer self-assembly. Journal of Colloid and Interface Science, 2018, 531, 533-543.	5.0	1
15	A wired-AND transistor: Polarity controllable FET with multiple inputs. , 2018, , .		24
16	New Generation Electron Beam Resists: A Review. Chemistry of Materials, 2017, 29, 1898-1917.	3.2	101
17	A new precision measurement of the α -decay half-life of 190 Pt. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2017, 768, 317-320.	1.5	12
18	Dopant induced single electron tunneling within the sub-bands of single silicon NW tri-gate junctionless n-MOSFET. Journal Physics D: Applied Physics, 2017, 50, 365104.	1.3	5

Yordan M Georgiev

#	Article	IF	CITATIONS
19	Doping top-down e-beam fabricated germanium nanowires using molecular monolayers. Materials Science in Semiconductor Processing, 2017, 62, 196-200.	1.9	17
20	Local Formation of InAs Nanocrystals in Si by Masked Ion Implantation and Flash Lamp Annealing. Physica Status Solidi C: Current Topics in Solid State Physics, 2017, 14, 1700188.	0.8	3
21	Novel germanium surface modification for sub-10 nm patterning with electron beam lithography and hydrogen silsesquioxane resist. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	11
22	High sensitivity silicon single nanowire junctionless phototransistor. Applied Physics Letters, 2016, 108, .	1.5	11
23	Electrical Characterization and Parameter Extraction of Junctionless Nanowire Transistors. Journal of Nano Research, 2016, 39, 17-33.	0.8	10
24	Correlation of lithographic performance of the electron beam resists SML and ZEP with their chemical structure. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33, .	0.6	4
25	Solvent Vapor Annealing of Block Copolymers in Confined Topographies: Commensurability Considerations for Nanolithography. Macromolecular Rapid Communications, 2015, 36, 762-767.	2.0	18
26	Aligned silicon nanofins <i>via</i> the directed self-assembly of PS- <i>b</i> -P4VP block copolymer and metal oxide enhanced pattern transfer. Nanoscale, 2015, 7, 6712-6721.	2.8	47
27	Organo-arsenic Molecular Layers on Silicon for High-Density Doping. ACS Applied Materials & Interfaces, 2015, 7, 15514-15521.	4.0	38
28	Parallel Arrays of Sub-10 nm Aligned Germanium Nanofins from an In Situ Metal Oxide Hardmask using Directed Self-Assembly of Block Copolymers. Chemistry of Materials, 2015, 27, 6091-6096.	3.2	23
29	Epitaxial Post-Implant Recrystallization in Germanium Nanowires. Crystal Growth and Design, 2015, 15, 4581-4590.	1.4	8
30	Junctionless nanowire transistor fabricated with high mobility Ge channel. Physica Status Solidi - Rapid Research Letters, 2014, 8, 65-68.	1.2	16
31	Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform. Microsystem Technologies, 2014, 20, 971-988.	1.2	1
32	Fully CMOS-compatible top-down fabrication of sub-50nm silicon nanowire sensing devices. Microelectronic Engineering, 2014, 118, 47-53.	1.1	14
33	Access resistance reduction in Ge nanowires and substrates based on non-destructive gas-source dopant in-diffusion. Journal of Materials Chemistry C, 2014, 2, 9248-9257.	2.7	18
34	Attomolar streptavidin and pH, low power sensor based on 3D vertically stacked SiNW FETs. , 2014, , .		4
35	Characterisation of a novel electron beam lithography resist, SML and its comparison to PMMA and ZEP resists. Microelectronic Engineering, 2014, 123, 126-130.	1.1	24
36	Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors. Sensors and Actuators B: Chemical, 2014, 199, 291-300.	4.0	23

Yordan M Georgiev

#	Article	IF	CITATIONS
37	Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sensors and Actuators B: Chemical, 2013, 183, 1-10.	4.0	43
38	Functionalized 3D 7×20-array of vertically stacked SiNW FET for streptavidin sensing. , 2013, , .		2
39	A miniaturised autonomous sensor based on nanowire materials platform: the SiNAPS mote. , 2013, , .		2
40	Resist–substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, .	0.6	17
41	FIB Patterning of Stainless Steel for the Development of Nano-Structured Stent Surfaces for Cardiovascular Applications. Journal of Physics: Conference Series, 2012, 371, 012065.	0.3	6
42	Top-down process of Germanium nanowires using EBL exposure of Hydrogen Silsesquioxane resist. , 2012, , .		5
43	Porous to Nonporous Transition in the Morphology of Metal Assisted Etched Silicon Nanowires. Japanese Journal of Applied Physics, 2012, 51, 11PE03.	0.8	5
44	Supercritical drying process for high aspect-ratio HSQ nano-structures. Microelectronic Engineering, 2006, 83, 1124-1127.	1.1	17
45	Impact of supercritical CO[sub 2] drying on roughness of hydrogen silsesquioxane e-beam resist. Journal of Vacuum Science & Technology B, 2006, 24, 570.	1.3	7
46	Megasonic-assisted development of nanostructures. Journal of Vacuum Science & Technology B, 2006, 24, 1827.	1.3	10
47	Surface roughness of hydrogen silsesquioxane as a negative tone electron beam resist. Vacuum, 2005, 77, 117-123.	1.6	29
48	Highly selective etch process for silicon-on-insulator nano-devices. Microelectronic Engineering, 2005, 78-79, 212-217.	1.1	32
49	Interferometric in situ alignment for UV-based nanoimprint. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2004, 22, 3242.	1.6	29
50	Megasonic-assisted development of nanostructures: Investigations on high aspect ratio nanoholes. Applied Physics Letters, 2004, 85, 5055-5057.	1.5	7
51	Electrical characterization of 12 nm EJ-MOSFETs on SOI substrates. Solid-State Electronics, 2004, 48, 739-745.	0.8	6
52	Study of a high contrast process for hydrogen silsesquioxane as a negative tone electron beam resist. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2018.	1.6	133
53	Fabrication of 12 nm electrically variable shallow junction metal–oxide–semiconductor field effect transistors on silicon on insulator substrates. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2003, 21, 2975.	1.6	9
54	Numerical modelling of the processes of exposure and development in electron beam lithography on high-temperature superconductor thin films. Thin Solid Films, 1998, 323, 222-226.	0.8	5

#	Article	IF	CITATIONS
55	Analysis of the proximity function in electron-beam lithography on high- superconducting thin-films. Superconductor Science and Technology, 1996, 9, 565-569.	1.8	3
56	A program for Monte Carlo simulation of penetration and scattering of accelerated electrons in multicomponent multilayer targets. Vacuum, 1996, 47, 1227-1230.	1.6	8
57	Monte Carlo simulation of inclined incidence of fast electrons to solids. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1996, 14, 2462.	1.6	1
58	A Monte Carlo study of proximity effects in electron-beam patterning of high-Tc superconducting thin films. Physica C: Superconductivity and Its Applications, 1995, 249, 187-195.	0.6	9
59	Monte Carlo simulation of electron-beam exposure distributions in the resist on structures with high-Tc superconducting thin films. Thin Solid Films, 1994, 251, 67-71.	0.8	6