Renata Stolf-Moreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3902297/publications.pdf

Version: 2024-02-01

38 papers 1,203 citations

471509 17 h-index 377865 34 g-index

38 all docs 38 docs citations

38 times ranked 1702 citing authors

#	Article	IF	CITATIONS
1	Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 2011, 12, 307.	2.8	313
2	Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. PLoS ONE, 2015, 10, e0132971.	2.5	132
3	Genome-wide annotation of the soybean WRKY family and functional characterization of genes involved in response to Phakopsora pachyrhiziinfection. BMC Plant Biology, 2014, 14, 236.	3.6	79
4	Post-Emergence Herbicidal Activity of Nanoatrazine Against Susceptible Weeds. Frontiers in Environmental Science, 2018, 6, .	3.3	53
5	Transcriptional Profiles of Roots of Different Soybean Genotypes Subjected to Drought Stress. Plant Molecular Biology Reporter, 2011, 29, 19-34.	1.8	52
6	Molecular, anatomical and physiological properties of a genetically modified soybean line transformed with rd29A:AtDREB1A for the improvement of drought tolerance. Genetics and Molecular Research, 2011, 10, 3641-3656.	0.2	50
7	Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, And Toxicity Evaluation. Scientific Reports, 2017, 7, 5929.	3.3	46
8	Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine toward maize plants. Frontiers in Chemistry, 2015, 3, 61.	3.6	41
9	Soybean physiology and gene expression during drought. Genetics and Molecular Research, 2010, 9, 1946-1956.	0.2	40
10	Plant growth-promoting bacteria improve leaf antioxidant metabolism of drought-stressed Neotropical trees. Planta, 2020, 251, 83.	3.2	34
11	Identification of reference genes for expression analysis by real-time quantitative PCR in drought-stressed soybean. Pesquisa Agropecuaria Brasileira, 2011, 46, 58-65.	0.9	27
12	Enhanced drought tolerance in seedlings of Neotropical tree species inoculated with plant growth-promoting bacteria. Plant Physiology and Biochemistry, 2018, 130, 277-288.	5.8	27
13	Composition and activity of endophytic bacterial communities in field-grown maize plants inoculated with Azospirillum brasilense. Annals of Microbiology, 2015, 65, 2187-2200.	2.6	26
14	Effects of nitric oxide-releasing nanoparticles on neotropical tree seedlings submitted to acclimation under full sun in the nursery. Scientific Reports, 2019, 9, 17371.	3.3	25
15	Ubiquitous urease affects soybean susceptibility to fungi. Plant Molecular Biology, 2012, 79, 75-87.	3.9	24
16	Differential gene expression and mitotic cell analysis of the drought tolerant soybean (Glycine max L.) Tj ETQq0 (Genetics and Molecular Biology, 2008, 31, 512-521.	0 o rgBT /C 1.3	overlock 10 Tf 20
17	Transcription factors expressed in soybean roots under drought stress. Genetics and Molecular Research, 2011, 10, 3689-3701.	0.2	19
18	Associative bacteria influence maize (<i>Zea mays</i> L.) growth, physiology and root anatomy under different nitrogen levels. Plant Biology, 2018, 20, 870-878.	3.8	19

#	Article	IF	CITATIONS
19	Light acclimation in nursery: morphoanatomy and ecophysiology of seedlings of three light-demanding neotropical tree species. Revista Brasileira De Botanica, 2016, 39, 19-28.	1.3	18
20	Cloning and quantitative expression analysis of drought-induced genes in soybean. Genetics and Molecular Research, 2010, 9, 858-867.	0.2	17
21	Morphoanatomy and ecophysiology of tree seedlings in semideciduous forest during high-light acclimation in nursery. Photosynthetica, 2015, 53, 597-608.	1.7	16
22	Nanoencapsulation improves the protective effects of a nitric oxide donor on drought-stressed Heliocarpus popayanensis seedlings. Ecotoxicology and Environmental Safety, 2021, 225, 112713.	6.0	16
23	Nitrogen use strategies of seedlings from neotropical tree species of distinct successional groups. Plant Physiology and Biochemistry, 2017, 114, 119-127.	5.8	13
24	Acclimation responses to high light by <i>Guazuma ulmifolia</i> Lam. (Malvaceae) leaves at different stages of development. Plant Biology, 2017, 19, 720-727.	3.8	13
25	Nitrogen supplementation improves the high-light acclimation of Guazuma ulmifolia Lam. seedlings. Trees - Structure and Function, 2019, 33, 421-431.	1.9	13
26	Morpho-anatomical and micromorphometrical evaluations in soybean genotypes during water stress. Brazilian Archives of Biology and Technology, 2009, 52, 1321-1331.	0.5	10
27	Enzimas marcadoras de indução de resistência diferencialmente reguladas em soja resistente e suscetÃvel à ferrugem-asiática-da-soja. Pesquisa Agropecuaria Brasileira, 2012, 47, 163-172.	0.9	9
28	Physiological, biochemical and morphoagronomic characterization of drought-tolerant and drought-sensitive bean genotypes under water stress. Physiology and Molecular Biology of Plants, 2018, 24, 1059-1067.	3.1	9
29	BRIEF COMMUNICATIONPhotosynthetic light-response curves of light-demanding and shade-tolerant seedlings of neotropical tree species. Photosynthetica, 2019, 57, 470-474.	1.7	9
30	Root exudate supplemented inoculant of Azospirillum brasilense Ab-V5 is more effective in enhancing rhizosphere colonization and growth of maize. Environmental Sustainability, 2020, 3, 187-197.	2.8	8
31	Nitrogen metabolism of Neotropical tree seedlings with contrasting ecological characteristics. Acta Physiologiae Plantarum, 2019, 41, 1.	2.1	7
32	Differential impacts of plant growth-promoting bacteria (PGPB) on seeds of neotropical tree species with contrasting tolerance to shade. Trees - Structure and Function, 2020, 34, 121-132.	1.9	5
33	Different leaf traits provide light-acclimation responses in two neotropical woody species. Theoretical and Experimental Plant Physiology, 2021, 33, 313-327.	2.4	4
34	Does inoculation with associative bacteria improve tolerance to nitrogen deficiency in seedlings of Neotropical tree species?. Environmental and Experimental Botany, 2021, 189, 104529.	4.2	3
35	Avaliações morfológicas e micromorfométricas de folhas de sol e de sombra Lithraea molleoides (VELL.) ENGL. (ANACARDIACEAE). Evolução E Conservação Da Biodiversidade, 2013, 4, 22.	0.1	3
36	Potential allelopathic effect of Brachiaria decumbens root exudates on neotropical tree seedlings. Theoretical and Experimental Plant Physiology, 2017, 29, 177-186.	2.4	2

#	Article	IF	CITATIONS
37	Condutividade elétrica como indicador de danos por temperaturas baixas em folhas de feijão. Semina:Ciencias Agrarias, 2019, 40, 1011.	0.3	1
38	Phenolic Compounds from Leaves of Cariniana estrellensis (Raddi) Kuntze (Lecythidaceae): A Brazilian Atlantic Forest Tree. Journal of the Brazilian Chemical Society, 0, , .	0.6	0